Skip to main content

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

Starting from well-quasi-orders (wqos), we motivate step by step the introduction of the complicated notion of better-quasi-order (bqo). We then discuss the equivalence between the two main approaches to defining bqo and state several essential results of bqo theory. After recalling the rôle played by the ideals of a wqo in its bqoness, we give a new presentation of known examples of wqos which fail to be bqo. We also provide new forbidden pattern conditions ensuring that a quasi-order is a better quasi-order.

Raphaël Carroy was supported by FWF Grants P28153 and P29999. Yann Pequignot gratefully acknowledges the support of the Swiss National Science Foundation (SNF) through grant \(P2LAP2\_164904\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The minor relations on finite graphs, proved to be wqo by Robertson and Seymour [32], is to our knowledge the only naturally occurring wqo which is not yet known to be bqo.

  2. 2.

    where \(\omega /m\) denotes the set \(\{n\in \omega \mid m<n\}\).

  3. 3.

    The reader who remains unconvinced can try to prove that the partial order \((3,=)\) satisfies this property.

  4. 4.

    See the introduction of [21].

  5. 5.

    As treated for instance in any introduction to set theory.

  6. 6.

    The only notable exception is \([\omega ]^1\) where both \(\mathrel {\lhd }\) and its complement are actually transitive. If F is a front on \(X=\{x_0,x_1,x_2,\ldots \}\), \(Y=\{x_3,x_4,x_5,\ldots \}\) and if \(s,t,u\in F\) are such that \(s\sqsubset \{x_0\} \cup Y\), \(|s|\ge 2\), \(t\sqsubset \{x_1,x_2\} \cup Y\), \(|t|\ge 2\) and \(u\sqsubset Y\). Then \(s\mathrel {\lhd }u\), while neither \(s\mathrel {\lhd }t\) nor \(t\mathrel {\lhd }u\).

  7. 7.

    Suppose that \(\mathcal {B}\) is a basis for the set of bqos on \(\omega \), i.e. \(B\subseteq 2^{\omega \times \omega }\) and for every qo Q on \(\omega \) we have Q is bqo iff for no \(B\in \mathcal {B}\) there exists an embedding from B to Q. Then \(\mathcal {B}\) is not analytic. Otherwise

    $$ Q\text { is } \textsc {bqo}{} \quad \longleftrightarrow \quad \text {there exists no }B\in \mathcal {B} \text { such that }B\text { embeds in }Q $$

    is a co-analytic definition of the set of bqos on \(\omega \), a contradiction with Marcone’s Theorem.

References

  1. Alvah Nash-Williams, C. S. J. (1965). On well-quasi-ordering transfinite sequences. In Proceedings of Cambridge Philosophical Society (Vol. 61, pp. 33–39). Cambridge: Cambridge University Press.

    Google Scholar 

  2. Bogart, K. P. (1993). An obvious proof of Fishburn’s interval order theorem. Discrete Mathematics, 118(1), 239–242.

    Article  Google Scholar 

  3. Carroy, R. (2013). A quasi-order on continuous functions. Journal of Symbolic Logic, 78(2), 633–648.

    Article  Google Scholar 

  4. Carroy, R., & Pequignot, Y. (2014). From well to better, the space of ideals. Fundamenta Mathematicae, 227(3), 247–270.

    Article  Google Scholar 

  5. Corominas, E. (1985). On better quasi-ordering countable trees. Discrete Mathematics, 53, 35–53.

    Article  Google Scholar 

  6. Conway, F. D., & Siegelman, J. (2006). Dark hero of the information age: In search of Norbert WienerThe father of cybernetics. Basic Books.

    Google Scholar 

  7. Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 161–166.

    Article  Google Scholar 

  8. Fishburn, P. C. (1970). Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psychology, 7(1), 144–149.

    Article  Google Scholar 

  9. Fishburn, P., & Monjardet, B. (1992). Norbert Wiener on the theory of measurement 1914 1915 1921. Journal of Mathematical Psychology, 36(2), 165–184.

    Article  Google Scholar 

  10. Fraïssé, R. (1948). Sur la comparaison des types d’ordres. Comptes rendus de l’Académie des Sciences, 226, 1330–1331.

    Google Scholar 

  11. Fraïssé, R. (2000). Theory of relations. Studies in Logic and the Foundations of Mathematics Elsevier Science.

    Google Scholar 

  12. Galvin, F., & Prikry, K. (1973). Borel sets and Ramsey’s theorem. The Journal of Symbolic Logic, 38, 193–198.

    Article  Google Scholar 

  13. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 3(1), 326–336.

    Article  Google Scholar 

  14. Kruskal, J. B. (1972). The theory of well-quasi-ordering: A frequently discovered concept. Journal of Combinatorial Theory, Series A, 13(3), 297–305.

    Article  Google Scholar 

  15. Landraitis, C. (1979). A combinatorial property of the homomorphism relation between countable order types. Journal of Symbolic Logic, 44, 403–411.

    Article  Google Scholar 

  16. Laver, R. (1971). On Fraïssé’s order type conjecture. The Annals of Mathematics, 93(1), 89–111.

    Article  Google Scholar 

  17. Laver, R. (1976). Well-quasi-orderings and sets of finite sequences. Mathematical Proceedings of the Cambridge Philosophical Society, 79(01), 1–10.

    Article  Google Scholar 

  18. Louveau, A., & Saint-Raymond, J. (1990). On the quasi-ordering of Borel linear orders under embeddability. Journal of Symbolic Logic, 55(2), 537–560.

    Article  Google Scholar 

  19. Marcone, A. (1994). Foundations of bqo theory. Transactions of the American Mathematical Society, 345(2), 641–660.

    Article  Google Scholar 

  20. Marcone, A. (1995). The set of better quasi orderings is \(\pi ^1_2\)-complete. Mathematical Logic Quarterly, 41, 373–383.

    Article  Google Scholar 

  21. Marcone, A. (2005). Wqo and bqo theory in subsystems of second order arithmetic. In S. G. Simpson (Ed.) Reverse mathematics 2001 (Vol. 21). Association for Symbolic Logic.

    Google Scholar 

  22. Marcone, A. (2007). Interval orders and reverse mathematics. Notre Dame Journal of Formal Logic, 48(3), 425–448.

    Article  Google Scholar 

  23. Montalbán, A. (2017). Fraïssé’s conjecture in Pi-1-1-comprehension. Preprint.

    Google Scholar 

  24. Pouzet, M., & Assous, R. Personal communication.

    Google Scholar 

  25. Pequignot, Y. (2015). Better-quasi-order: ideals and spaces. Ph.D. thesis, Université de Lausanne and Université Paris Diderot–Paris 7.

    Google Scholar 

  26. Pouzet, M. (1972). Sur les prémeilleurordres. Annales de l’institut Fourier (Grenoble), 22, 1–20.

    Article  Google Scholar 

  27. Pouzet, M. (1978). Sur la théorie des relations. Thèse d’état: Université Claude Bernard.

    Google Scholar 

  28. Pouzet, M. (1985). Applications of well quasi-ordering and better quasi-ordering. In Graphs and order, pp. 503–519. Dordrecht: Springer.

    Chapter  Google Scholar 

  29. Pudlák, P., & Rödl, V. (1982). Partition theorems for systems of finite subsets of integers. Discrete Mathematics, 39(1), 67–73.

    Article  Google Scholar 

  30. Pouzet, M., & Sauer, N. (2006). From well-quasi-ordered sets to better-quasi-ordered sets. Journal of Combinatorics, 13(4), 101.

    Google Scholar 

  31. Rado, R. (1954). Partial well-ordering of sets of vectors. Mathematika, 1(02), 89–95.

    Article  Google Scholar 

  32. Robertson, N., & Seymour, P. D. (2004). Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B, 92(2), 325–357. Special Issue Dedicated to Professor W.T. Tutte.

    Google Scholar 

  33. Simpson, S. G. (1985). Bqo theory and Fraïssé’s conjecture. In R. B. Mansfield & G. Weitkamp (Eds.), Recursive aspects of descriptive set theory (pp. 124–138). Oxford: Oxford University Press.

    Google Scholar 

  34. Thomassé, S. (2000). On better-quasi-ordering countable series-parallel orders. Transactions of the American Mathematical Society, 352(6), 2491–2505.

    Article  Google Scholar 

  35. van Engelen, F., Miller, A. W., & Steel, J. (1987). Rigid borel sets and better quasiorder theory. Contemporary Mathematics, 65.

    Google Scholar 

  36. Wiener, N. (1914). A contribution to the theory of relative position. Proceedings of the Cambridge Philosophical Society, 17, 441–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Carroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carroy, R., Pequignot, Y. (2020). Well, Better and In-Between. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_1

Download citation

Publish with us

Policies and ethics