Functionalization of Graphene—A Critical Overview of its Improved Physical, Chemical and Electrochemical Properties

  • Ramesh Kumar SinghEmail author
  • Naresh Nalajala
  • Tathagata Kar
  • Alex Schechter
Part of the Carbon Nanostructures book series (CARBON)


Graphene, the 2D allotrope of carbon, is reported to be functionalized with a plethora of organic and inorganic species. This functionalization imparts significant improvement in the physical, chemical and electrochemical properties of graphene. The covalent and non-covalent functionalization of graphene with electron-rich organic moieties and heteroatoms is focused on different sections of this chapter. The focus is laid on the improvement in physical, chemical and electrochemical properties of graphene achieved through this functionalization. The enhancement in electrocatalytic activity of non-metal-doped graphene towards the oxygen reduction reaction, methanol oxidation reaction and photocatalysis is covered. Towards the end, the potential uses of functionalized graphene for selected applications like biosensors, fuel cells and dye-sensitized solar cells are also discussed.


Graphene Functionalization Doping Electrochemistry Applications 


  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)Google Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5596), 666 LP–669 LP (2004).
  3. 3.
    Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H., Lee, J.H.: Chemical functionalization of graphene and its applications. Prog. Mater Sci. 57(7), 1061–1105 (2012).
  4. 4.
    Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008).
  5. 5.
    Qu, L., Liu, Y., Baek, J.-B., Dai, L.: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010).
  6. 6.
    Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: Graphene oxide doped polyaniline for supercapacitors. Electrochem. commun. 11(6), 1158–1161 (2009).
  7. 7.
    Yoo, E., Kim, J., Hosono, E., Zhou, H., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008).
  8. 8.
    Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta 55(12), 3909–3914 (2010).
  9. 9.
    Paek, S.-M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2009).
  10. 10.
    Guo, S., Sun, S.: Fept nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134(5), 2492–2495 (2012).
  11. 11.
    Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., Govindaraj, A., Rao, C.N.R.: Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120(1), 9–13 (2008).
  12. 12.
    Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010).
  13. 13.
    Wang, Y., Shi, Z., Huang, Y.; Ma, Y., Wang, C., Chen, M., Chen, Y. : Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113(30), 13103–13107 (2009).
  14. 14.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007).
  15. 15.
    Marcano, D.C., Kosynkin, D.V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010).
  16. 16.
    Xu, Y., Sheng, K., Li, C., Shi, G.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7), 4324–4330 (2010).
  17. 17.
    Muñoz, R., Gómez-Aleixandre, C.: Review of cvd synthesis of graphene. Chem. Vap. Depos. 19(10–12), 297–322 (2013).
  18. 18.
    Guermoune, A., Chari, T., Popescu, F., Sabri, S.S., Guillemette, J., Skulason, H.S., Szkopek, T.: Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon N. Y. 49(13), 4204–4210 (2011).
  19. 19.
    Yang, W., Chen, G., Shi, Z., Liu, C.C., Zhang, L., Xie, G., Cheng, M., Wang, D., Yang, R., Shi, D., et al.: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013).
  20. 20.
    Sinitskii, A., Dimiev, A., Corley, D.A., Fursina, A.A., Kosynkin, D.V, Tour, J.M.: Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4), 1949–1954 (2010).
  21. 21.
    Strom, T.A., Dillon, E.P., Hamilton, C.E., Barron, A.R.: Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chem. Commun. 46(23), 4097–4099 (2010).
  22. 22.
    An, X., Butler, T.W., Washington, M., Nayak, S.K., Kar, S.: Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano 5(2), 1003–1011 (2011).
  23. 23.
    Imran Jafri, R., Rajalakshmi, N., Ramaprabhu, S.: Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 20(34), 7114–7117 (2010).
  24. 24.
    Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098–7105 (2009).
  25. 25.
    Bai, H., Xu, Y., Zhao, L., Li, C., Shi, G.: Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. (13), 1667–1669 (2009).
  26. 26.
    Liu, J., Li, Y., Li, Y., Li, J., Deng, Z.: Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 20(5), 900–906 (2010).
  27. 27.
    Georgakilas, V., Tiwari, J.N., Kemp, K.C., Perman, J.A., Bourlinos, A.B., Kim, K.S., Zboril, R.: Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). Scholar
  28. 28.
    Toh, R.J., Poh, H.L., Sofer, Z., Pumera, M.: Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Chem. Asian J. 8(6), 1295–1300 (2013).
  29. 29.
    Li, J., Zhang, Y., Zhang, X., Han, J., Wang, Y., Gu, L., Zhang, Z., Wang, X., Jian, J., Xu, P., et al.: Direct transformation from graphitic C3N4 to nitrogen-doped graphene: an efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(35), 19626–19634 (2015). Scholar
  30. 30.
    Palaniselvam, T., Valappil, M.O., Illathvalappil, R., Kurungot, S.: Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping. Energy Environ. Sci. 7(3), 1059–1067 (2014). Scholar
  31. 31.
    Klingele, M., Pham, C., Vuyyuru, K. R., Britton, B., Holdcroft, S., Fischer, A., Thiele, S.: Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochem. Commun. 77, 71–75 (2017). Scholar
  32. 32.
    Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M., Qiao, S.Z.: Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 125(11), 3192–3198 (2013).
  33. 33.
    Sheng, Z.-H., Gao, H.-L., Bao, W.-J., Wang, F.-B., Xia, X.-H.: Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 22(2), 390–395 (2012). Scholar
  34. 34.
    Li, J., Li, X., Xiong, D., Hao, Y., Kou, H., Liu, W., Li, D., Niu, Z.: Novel iodine-doped reduced graphene oxide anode for sodium ion batteries. RSC Adv. 7(87), 55060–55066 (2017). Scholar
  35. 35.
    Zhan, Y., Huang, J., Lin, Z., Yu, X., Zeng, D., Zhang, X., Xie, F., Zhang, W., Chen, J., Meng, H.: Iodine/Nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon N. Y. 95, 930–939 (2015).
  36. 36.
    Huang, H., Ming, K., Fang, Y., Zhao, H., Wang, X., Chen, J., Guo, J., Zhang, J.: Fluorine-doped graphene with an outstanding electrocatalytic performance for efficient oxygen reduction reaction in alkaline solution. R. Soc. Open Sci. 5(10), 180925 (2018). Scholar
  37. 37.
    Ion-Ebrasu, D., Varlam, M., Balan, D., Enachescu, M., Raceanu, M., Carcadea, E., Marinoiu, A., Stefanescu, I.: Iodine-doped graphene for enhanced electrocatalytic oxygen reduction reaction in proton exchange membrane fuel cell applications. J. Electrochem. Energy Convers. Storage 14(3), 031001 (2017). Scholar
  38. 38.
    Park, M., Jeon, I.Y., Ryu, J., Jang, H., Back, J.B., Cho, J.: Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy 26, 233–240 (2016). Scholar
  39. 39.
    Gao, L., Yue, W., Tao, S., Fan, L.: Novel strategy for preparation of graphene-pd, pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir 29(3), 957–964 (2013). Scholar
  40. 40.
    Awasthi, R., Singh, R.N.: Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon N. Y. 51, 282–289 (2013). Scholar
  41. 41.
    Wang, Y., Liu, H., Wang, L., Wang, H., Du, X., Wang, F., Qi, T., Lee, J.-M., Wang, X.: Pd catalyst supported on a chitosan-functionalized large-area 3d reduced graphene oxide for formic acid electrooxidation reaction. J. Mater. Chem. A1(23), 6839–6848 (2013). Scholar
  42. 42.
    Jeon, I.Y., Choi, H.J., Choi, M., Seo, J.M., Jung, S.M., Kim, M.J., Zhang, S., Zhang, L., Xia, Z., Dai, L., et al.: Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 3, 1–7 (2013). Scholar
  43. 43.
    Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., deHeer, W.A., et al.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10(10), 4061–4066 (2010). Scholar
  44. 44.
    Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., Brus, L.E.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131(47), 17099–17101 (2009). Scholar
  45. 45.
    Georgakilas, V., Bourlinos, A.B., Zboril, R., Steriotis, T.A., Dallas, P., Stubos, A.K., Trapalis, C.: Organic functionalisation of graphenes. Chem. Commun. 46(10), 1766–1768 (2010). Scholar
  46. 46.
    Zhang, X., Hou, L., Cnossen, A., Coleman, A.C., Ivashenko, O., Rudolf, P., van Wees, B.J., Browne, W.R., Feringa, B.L.: One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. Eur. J. 17(32), 8957–8964 (2011).
  47. 47.
    Liu, L.-H., Lerner, M.M., Yan, M.: Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 10(9), 3754–3756 (2010). Scholar
  48. 48.
    Vadukumpully, S., Gupta, J., Zhang, Y., Xu, G.Q., Valiyaveettil, S.: Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility. Nanoscale 3(1), 303–308 (2011).
  49. 49.
    Zhong, X., Jin, J., Li, S., Niu, Z., Hu, W., Li, R., Ma, J.: Aryne cycloaddition: highly efficient chemical modification of graphene. Chem. Commun. 46(39), 7340–7342 (2010). Scholar
  50. 50.
    Riley, K.E., Pitoňák, M., Jurečka, P., Hobza, P.: Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110(9), 5023–5063 (2010).
  51. 51.
    Xu, Y., Bai, H., Lu, G., Li, C., Shi, G.: Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130(18), 5856–5857 (2008).
  52. 52.
    Wang, Y., Chen, X., Zhong, Y., Zhu, F., Loh, K.P.: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95(6), 1–4 (2009).
  53. 53.
    Zhang, K., Zhang, L.L., Zhao, X.S., Wu, J.: Graphene/Polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010).
  54. 54.
    Yang, Q., Pan, X., Huang, F., Li, K.: Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 114(9), 3811–3816 (2010).
  55. 55.
    Kodali, V.K., Scrimgeour, J., Kim, S., Hankinson, J.H., Carroll, K.M., de Heer, W.A., Berger, C., Curtis, J.E.: Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27(3), 863–865 (2011).
  56. 56.
    Su, Q., Pang, S., Alijani, V., Li, C., Feng, X., Müllen, K.: Composites of graphene with large aromatic molecules. Adv. Mater. 21(31), 3191–3195 (2009).
  57. 57.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012).
  58. 58.
    Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., et al.: Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science (80-) 323(5914), 610 LP–613 LP (2009).
  59. 59.
    Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonson, M., Adamson, D.H., Prud’homme, R.K., Car, R., Seville, D.A., Aksay, I.A.: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006).
  60. 60.
    Lee, J.K., Yamazaki, S., Yun, H., Park, J., Kennedy, G.P., Kim, G.T., Pietzsch, O., Wiesendanger, R., Lee, S., Hong, S., et al.: Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 13(8), 3494–3500 (2013).
  61. 61.
    Schiros, T., Nordlund, D., Pálová, L., Prezzi, D., Zhao, L., Kim, K. S., Wurstbauer, U., Gutiérrez, C., Delongchamp, D., Jaye, C., et al.: Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12(8), 4025–4031 (2012).
  62. 62.
    Macedo, L.J.A., Lima, F.C.D.A., Amorim, R.G., Freitas, R.O., Yadav, A., Iost, R.M., Balasubramanian, K., Crespilho, F.N.: Interplay of non-uniform charge distribution on the electrochemical modification of graphene. Nanoscale 10(31), 15048–15057 (2018).
  63. 63.
    Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Electronic properties of chemically modified graphene ribbons. Phys. Status Solidi Basic Res. 245(10), 2068–2071 (2008).
  64. 64.
    de la Torre, B., Švec, M., Hapala, P., Redondo, J., Krejčí, O., Lo, R., Manna, D., Sarmah, A., Nachtigallová, D., Tuček, J., et al.: Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat. Commun. 9(1), 1–9 (2018).
  65. 65.
    Saha, S., Samanta, P., Chandra Murmu, N., Kuila, T.: Investigation of the surface plasmon polariton and electrochemical properties of covalent and non-covalent functionalized reduced graphene oxide. Phys. Chem. Chem. Phys. 19(42), 28588–28595 (2017).
  66. 66.
    Zhou, J., Wu, M.M., Zhou, X., Sun, Q.: Tuning electronic and magnetic properties of graphene by surface modification. Appl. Phys. Lett. 95(10) (2009).
  67. 67.
    Dedkov, Y.S., Fonin, M.: Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 12, 125004 (2010).
  68. 68.
    Johari, P., Shenoy, V.B.: Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5(9), 7640–7647 (2011).
  69. 69.
    Xu, Y., Liu, Z., Zhang, X., Wang, Y., Tian, J., Huang, Y., Ma, Y., Zhang, X., Chen, Y.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21(12), 1275–1279 (2009).
  70. 70.
    Du, Y., Dong, N., Zhang, M., Zhu, K., Na, R., Zhang, S., Sun, N., Wang, G., Wang, J.: Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting. Phys. Chem. Chem. Phys. 19(3), 2252–2260 (2017).
  71. 71.
    Wang, A., Yu, W., Huang, Z., Zhou, F., Song, J., Song, Y., Long, L., Cifuentes, M.P., Humphrey, M.G., Zhang, L., et al.: Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 6, 1–12 (2016).
  72. 72.
    Li, Z., He, C., Wang, Z., Gao, Y., Dong, Y., Zhao, C., Chen, Z., Wu, Y., Song, W.: Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties. Photochem. Photobiol. Sci. 15(7), 910–919 (2016).
  73. 73.
    Zhao, X., Yan, X. Q., Ma, Q., Yao, J., Zhang, X. L., Liu, Z. B., Tian, J. G.: Nonlinear optical and optical limiting properties of graphene hybrids covalently functionalized by phthalocyanine. Chem. Phys. Lett. 577, 62–67 (2013).
  74. 74.
    Liu, Z., Xu, Y., Zhang, X., Zhang, X., Chen, Y., Tian, J.: Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B (ACS Publ.) 9681–9686 (2009)Google Scholar
  75. 75.
    Xu, X., Li, P., Zhang, L., Liu, X., Zhang, H.L., Shi, Q., He, B., Zhang, W., Qu, Z., Liu, P.: Covalent functionalization of graphene by nucleophilic addition reaction: synthesis and optical-limiting properties. Chem. Asian J. 12(19), 2583–2590 (2017).
  76. 76.
    Orellana, W., Correa, J.D.: Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: stability and optical properties from ab initio calculations. J. Mater. Sci. 50(2), 898–905 (2014).
  77. 77.
    Liu, W., Liu, J.Y., Miao, M.S.: Macrocycles inserted in graphene: from coordination chemistry on graphene to graphitic carbon oxide. Nanoscale 8(41), 17976–17983 (2016).
  78. 78.
    Chowdhury, S., Jana, D.: Electronic and magnetic properties of modified silicene/graphene hybrid: ab initio study. Mater. Chem. Phys. 183, 580–587 (2016).
  79. 79.
    Ray, S.C., Soin, N., Pong, W. F., Roy, S.S., Strydom, A.M., McLaughlin, J.A., Papakonstantinou, P.: Plasma modification of the electronic and magnetic properties of vertically aligned Bi-/Tri-layered graphene nanoflakes. RSC Adv. 6(75), 70913–70924 (2016).
  80. 80.
    Ray, S.C., Soin, N., Makgato, T., Chuang, C.H., Pong, W.F., Roy, S.S., Ghosh, S.K., Strydom, A.M., McLaughlin, J.A.: Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci. Rep. 4 (2014).
  81. 81.
    Liu, Y., Tang, N., Wan, X., Feng, Q., Li, M., Xu, Q., Liu, F., Du, Y.: Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci. Rep. 3 (2013).
  82. 82.
    Yazyev, O.V., Helm, L.: Defect-induced magnetism in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 75(12), 1–5 (2007).
  83. 83.
    Gonzalez-Herrero, H., Gomez-Rodriguez, J.M., Mallet, P., Moaied, M., Palacios, J.J., Salgado, C., Ugeda, M.M., Veuillen, J.-Y., Yndurain, F., Brihuega, I.: Supplementary materials for atomic-scale control of graphene magnetism by using hydrogen atoms. Science (80-) 352(6284), 437–441 (2016).
  84. 84.
    Park, R.S., Lee, S., Bozoklu, K.-S., Cai, G., Nguyen, W., Ruoff, S.T.: Graphene oxide papers. ACS Nano 2(3), 572–578 (2008).
  85. 85.
    Gonalves, G., Marques, P.A.A.P., Barros-Timmons, A., Bdkin, I., Singh, M.K., Emami, N., Grácio, J.: Graphene oxide modified with pmma via atrp as a reinforcement filler. J. Mater. Chem. 20(44), 9927–9934 (2010).
  86. 86.
    Song, S., Wan, C., Zhang, Y.: Non-covalent functionalization of Graphene oxide by Pyrene-block copolymers for enhancing physical properties of Poly(Methyl Methacrylate). RSC Adv. 5(97), 79947–79955 (2015).
  87. 87.
    Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007).
  88. 88.
    Suk, J. W., Piner, R. D., An, J., Ruoff, R. S.: Mechanical properties of monolayer graphene oxide. ACS Nano. 4, 6557−6564 (2010)Google Scholar
  89. 89.
    Wang, B., Li, Z., Wang, C., Signetti, S., Cunning, B.V., Wu, X., Huang, Y., Jiang, Y., Shi, H., Ryu, S., et al.: Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance. Adv. Mater. 30(35), 1–10 (2018).
  90. 90.
    Tang, Y., Yang, Z., Dai, X.: A theoretical simulation on the catalytic oxidation of co on pt/graphene. Phys. Chem. Chem. Phys. 14(48), 16566–16572 (2012).
  91. 91.
    Li, F., Zhao, J., Chen, Z.: Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 116(3), 2507–2514 (2012).
  92. 92.
    Guo, N., Xi, Y., Liu, S., Zhang, C.: Greatly enhancing catalytic activity of graphene by doping the underlying metal substrate. Sci. Rep. 5, 1–7 (2015).
  93. 93.
    Lu, Y.-H., Zhou, M., Zhang, C., Feng, Y.-P.: Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C 113(47), 20156–20160 (2009).
  94. 94.
    Zhou, M., Zhang, A., Dai, Z., Zhang, C., Feng, Y.P.: Greatly enhanced adsorption and catalytic activity of au and pt clusters on defective graphene. J. Chem. Phys. 132(19), 7–10 (2010).
  95. 95.
    Wang, X., Song, L., Yang, H., Xing, W., Lu, H., Hu, Y.: Cobalt Oxide/Graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J. Mater. Chem. 22(8), 3426–3431 (2012).
  96. 96.
    Wang, Y., Wen, Z., Zhang, H., Cao, G., Sun, Q., Cao, J.: CuO Nanorods-decorated reduced graphene oxide nanocatalysts for catalytic oxidation of Co. Catalysts 6(12), 214 (2016).
  97. 97.
    Li, W., Zhang, H., Wang, J., Qiao, W., Ling, L., Long, D.: Flexible Ru/Graphene aerogel with switchable surface chemistry: highly efficient catalyst for room-temperature CO oxidation. Adv. Mater. Interfaces 3(10), 1–8 (2016).
  98. 98.
    Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S., LechWyszynski, M.: A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng. 2(1), 11–31 (2017).
  99. 99.
    Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., Gu, S.: A review of advanced catalyst development for fischer-tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4(8), 2210–2229 (2014).
  100. 100.
    Cheng, Y., Lin, J., Xu, K., Wang, H., Yao, X., Pei, Y., Yan, S., Qiao, M., Zong, B.: Fischer-tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal. 6(1), 389–399 (2016).
  101. 101.
    Zhao, H., Zhu, Q., Gao, Y., Zhai, P., Ma, D.: Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for fischer tropsch synthesis. Appl. Catal. A Gen. 456, 233–239 (2013).
  102. 102.
    Abbas, M., Zhang, J., Lin, K., Chen, J.: Fe3O4 nanocubes assembled on RGO nanosheets: ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in fischer-tropsch synthesis. Ultrason. Sonochem. 42, 271–282 (2018).
  103. 103.
    Sun, B., Jiang, Z., Fang, D., Xu, K., Pei, Y., Yan, S., Qiao, M., Fan, K., Zong, B.: One-pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for fischer-tropsch synthesis. ChemCatChem 5(3), 714–719 (2013).
  104. 104.
    Taghavi, S., Asghari, A., Tavasoli, A.: Enhancement of performance and stability of graphene nano sheets supported cobalt catalyst in fischer–tropsch synthesis using graphene functionalization. Chem. Eng. Res. Des. 119, 198–208 (2017).
  105. 105.
    Hajjar, Z., Doroudian Rad, M., Soltanali, S.: Novel CO/Graphene oxide and CO/nanoporous graphene catalysts for fischer–tropsch reaction. Res. Chem. Intermed. 43(3), 1341–1353 (2017).
  106. 106.
    Yadav, M.D., Dasgupta, K., Kushwaha, A., Srivastava, A.P., Patwardhan, A.W., Srivastava, D., Joshi, J.B.: Few layered graphene by floating catalyst chemical vapour deposition and its extraordinary H2O2 sensing property. Mater. Lett. 199, 180–183 (2017).
  107. 107.
    Rostamnia, S., Doustkhah, E., Golchin-Hosseini, H., Zeynizadeh, B., Xin, H., Luque, R.: Efficient tandem aqueous room temperature oxidative amidations catalysed by supported Pd nanoparticles on graphene oxide. Catal. Sci. Technol. 6(12), 4124–4133 (2016).
  108. 108.
    Rahimi, R., Moshari, M., Rabbani, M., Azad, A.: Photooxidation of benzyl alcohols and photodegradation of cationic dyes by Fe3O4@sulfur/reduced graphene oxide as catalyst. RSC Adv. 6(47), 41156–41164 (2016).
  109. 109.
    Zahed, B., Hosseini-Monfared, H.: A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect. Appl. Surf. Sci. 328, 536–547 (2015).
  110. 110.
    Song, Z., Li, W., Niu, F., Xu, Y., Niu, L., Yang, W., Wang, Y., Liu, J.: A novel method to decorate au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity. J. Mater. Chem. A 5(1), 230–239 (2017).
  111. 111.
    Chung, H.T., Cullen, D. A., Higgins, D., Sneed, B.T., Holby, E.F. More, K.L., Zelenay, P.: Direct atomic-level insight into the active sites of a high-performance pgm-free ORR catalyst. Science (80-) 357(6350), 479–484 (2017).
  112. 112.
    Gasteiger, H.A., Markovi, N.M.: Chemistry: just a dream--or future reality? Science (80-) 324(5923), 48–49 (2009).
  113. 113.
    Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J.-P., Wu, G., Chung, H.T., Johnston, C.M., Zelenay, P.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4(1), 114 (2011).
  114. 114.
    Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T.: Activity benchmarks and requirements for Pt, Pt-alloy, and Non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56(1-2 Special issue), 9–35 (2005).
  115. 115.
    Wang, J.X., Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W. P., Adzic, R.R.: Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J. Am. Chem. Soc. 131(47), 17299–17302 (2009).
  116. 116.
    Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., Markovic, N.M.:Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science (80-) 315(5811), 493–497 (2007).
  117. 117.
    Li, Y., Zhou, W., Wang, H., Xie, L., Liang, Y., Wei, F., Idrobo, J.C., Pennycook, S.J., Dai, H.: An oxygen reduction electrocatalyst based on carbon nanotubeĝ€ graphene complexes. Nat. Nanotechnol. 7(6), 394–400 (2012).
  118. 118.
    Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., Nørskov, J.K.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009).
  119. 119.
    Xu, M., Ivey, D.G., Xie, Z., Qu, W.: Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement. J. Power Sources 283, 358–371 (2015).
  120. 120.
    Blurton, K.F., Sammells, A.F.: Metal/air batteries: their status and potential - a review. J. Power Sources 4(4), 263–279 (1979).
  121. 121.
    Kraytsberg, A., Ein-Eli, Y.: Review on Li-air batteries - opportunities, limitations and perspective. J. Power Sources 196(3), 886–893 (2011).
  122. 122.
    Lee, J.S., Kim, S.T., Cao, R., Choi, N.S., Liu, M.; Lee, K.T., Cho, J.: Adv. Energy Mater. 1(1), 34–50 (2011).
  123. 123.
    Gelman, D., Shvartsev, B., Ein-Eli, Y.: Aluminum-air battery based on an ionic liquid electrolyte. J. Mater. Chem. A 2(47), 20237–20242 (2014).
  124. 124.
    Gong, K., Du, F., Xia, Z., Durstock, M., Dai, L.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science (80-) 323(5915), 760 LP–764 LP (2009).
  125. 125.
    Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chemie. Int. Ed. 51(46), 11496–11500 (2012).
  126. 126.
    Zhang, L., Xia, Z.: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011).
  127. 127.
    Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., Huang, S.: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012).
  128. 128.
    Xiong, W., Du, F., Liu, Y., Perez, A., Supp, M., Ramakrishnan, T.S., Dai, L., Jiang, L.: 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132(45), 15839–15841 (2010).
  129. 129.
    Wang, S., Yu, D., Dai, L.: Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133(14), 5182–5185 (2011).
  130. 130.
    Yu, D., Nagelli, E., Du, F., Dai, L.: Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 1(14), 2165–2173 (2010).
  131. 131.
    Subramanian, P., Cohen, A., Teblum, E., Nessim, G.D., Bormasheko, E., Schechter, A.: Electrocatalytic activity of nitrogen plasma treated vertically aligned carbon nanotube carpets towards oxygen reduction reaction. Electrochem. Commun. 49, 42–46 (2014).
  132. 132.
    Yan, X., Jia, Y., Yao, X.: Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 47, 7628–7658 (2018).
  133. 133.
    Jahan, M., Bao, Q., Loh, K.P.: Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134(15), 6707–6713 (2012).
  134. 134.
    Kolagatla, S., Subramanian, P., Schechter, A.: Nanoscale mapping of catalytic hotspots on Fe, N-Modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale 10(15), 6962–6970 (2018).
  135. 135.
    Zhou, Y., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z., O’Hayre, R.: Enhancement of Pt and Pt-Alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437–1446 (2010).
  136. 136.
    Wood, K.N., O’Hayre, R., Pylypenko, S.: Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014).
  137. 137.
    Bera, B., Chakraborty, A., Kar, T., Leuaa, P., Neergat, M.: Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-Doped carbon and their influence on electrocatalysis of oxygen reduction reaction. J. Phys. Chem. C 121(38), 20850–20856 (2017).
  138. 138.
    Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., Dai, H.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011).
  139. 139.
    Liang, Y., Wang, H., Casalongue, H.S., Chen, Z., Dai, H.: TiO2 Nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 3(10), 701–705 (2010).
  140. 140.
    Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J.: P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010).
  141. 141.
    Zhou, K., Zhu, Y., Yang, X., Jiang, X., Li, C.: Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35(2), 353–359 (2011).
  142. 142.
    Gao, E., Wang, W., Shang, M., Xu, J.: Synthesis and enhanced photocatalytic performance of graphene-Bi 2WO6 composite. Phys. Chem. Chem. Phys. 13(7), 2887–2893 (2011).
  143. 143.
    Xu, T., Zhang, L., Cheng, H., Zhu, Y.: Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B Environ. 101(3–4), 382–387 (2011).
  144. 144.
    Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J.R.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011).
  145. 145.
    Xiang, Q., Yu, J., Jaroniec, M.: Preparation and enhanced visible-light photocatalytic H2- production activity of graphene/C3N4 composites. J. Phys. Chem. C 115(15), 7355–7363 (2011).
  146. 146.
    Jia, L., Wang, D.H., Huang, Y.X., Xu, A.W., Yu, H.Q.: Highly durable N-Doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 115(23), 11466–11473 (2011).
  147. 147.
    Zhou, L., Mao, H., Wu, C., Tang, L., Wu, Z., Sun, H., Zhang, H., Zhou, H., Jia, C., Jin, Q., et al.: Label-Free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosens. Bioelectron. 87, 701–707 (2017).
  148. 148.
    Li, Y., Wang, C., Zhu, Y., Zhou, X., Xiang, Y., He, M., Zeng, S.: Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 89, 758–763 (2017).
  149. 149.
    Lee, D.H., Cho, H.S., Han, D., Chand, R., Yoon, T.J., Kim, Y.S.: Highly selective organic transistor biosensor with inkjet printed graphene oxide support system. J. Mater. Chem. B 5(19), 3580–3585 (2017).
  150. 150.
    Lei, Y.M., Xiao, M.M., Li, Y.T., Xu, L., Zhang, H., Zhang, Z.Y., Zhang, G.J.: Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens. Bioelectron. 91, 1–7 (2017).
  151. 151.
    Ng, S.P., Qiu, G., Ding, N., Lu, X., Wu, C.M.L.: Label-free detection of 3-Nitro-L-Tyrosine with nickel-doped graphene localized surface plasmon resonance biosensor. Biosens. Bioelectron. 89, 468–476 (2017).
  152. 152.
    Choi, B.G., Park, H., Park, T.J., Yang, M.H., Kim, J.S., Jang, S.-Y., Heo, N.S., Lee, S.Y., Kong, J., Hong, W.H.: Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5), 2910–2918 (2010).
  153. 153.
    Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt. Quantum Electron. 47(11), 3599–3611 (2015).
  154. 154.
    Kanyong, P., Krampa, F.D., Aniweh, Y., Awandare, G.A.: Polydopamine-functionalized graphene nanoplatelet smart conducting electrode for bio-sensing applications. Arab. J. Chem. 1–9 (2018).
  155. 155.
    Tachibana, N., Ikeda, S., Yukawa, Y., Kawaguchi, M.: Highly porous nitrogen-doped carbon nanoparticles synthesized via simple thermal treatment and their electrocatalytic activity for oxygen reduction reaction. Carbon N. Y. 115, 515–525 (2017).
  156. 156.
    Kruusenberg, I., Ratso, S., Vikkisk, M., Kanninen, P., Kallio, T., Kannan, A.M., Tammeveski, K.: Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J. Power Sources 281, 94–102 (2015).
  157. 157.
    Peng X., Omasta, T.J.; Magliocca, E.; Wang, L.; Varcoe, J.R.; Mustain, W.E.: N-doped carbon CoOx nanohybrids: the first precious metal free cathode to achieve 1.0 w/cm2 peak power and 100 h life in anion-exchange membrane fuel cells. Angew. Chemie Int. Ed. 1–7 (2018).
  158. 158.
    Bi, E., Chen, H., Yang, X., Peng, W., Grätzel, M., Han, L.: A quasi core–shell nitrogen-doped graphene/cobalt sulfide conductive catalyst for highly efficient dye-sensitized solar cells. Energy Environ. Sci. 7(8), 2637–2641 (2014).
  159. 159.
    Ma, H., Tian, J., Cui, L., Liu, Y., Bai, S., Chen, H., Shan, Z.: Porous activated graphene nanoplatelets incorporated in TiO2 photoanodes for high-efficiency dye-sensitized solar cells. J. Mater. Chem. A 3(16), 8890–8895 (2015).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ramesh Kumar Singh
    • 1
    Email author
  • Naresh Nalajala
    • 2
  • Tathagata Kar
    • 3
  • Alex Schechter
    • 1
  1. 1.Department of Chemical SciencesAriel UniversityArielIsrael
  2. 2.National Chemical Laboratory [NCL]PuneIndia
  3. 3.Department of Materials Science and EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations