Advertisement

Graphene and Its Modifications for Supercapacitor Applications

  • Mandira Majumder
  • Anukul K. ThakurEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Supercapacitors, also termed as electrochemical capacitors or ultracapacitors store charge using high surface area conducting materials. However, their extensive use is limited by the low energy density delivered and relatively high effective series resistance. In order to improve the specific capacitance, energy density as well as the power density, combining materials with requisite properties resulting in hybrids seems to be an attractive way out. Carbon forms one of the most prime materials to be used as supercapacitor electrodes. Structurally modified graphene through chemical functionalization reveals numerous possibilities for attaining tunable structural and electrochemical properties. Till now several chemical and physical functionalization methods have been explored in order to augment the stabilization and result in modification of the graphene. This chapter is concerned detailing the variety of chemical modifications routes of graphene reported so far, their effect on the electrochemical properties of graphene and the applicability of the developed material as a supercapacitor electrode material.

Keywords

Graphene Covalent interactions Non-covalent interactions Supercapacitor 

References

  1. 1.
    Yang, Z., Zhang, J., Kintner-Meyer, M.C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011)Google Scholar
  2. 2.
    Choi, H.S., Park, C.R.: Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. J. Power Sources 259, 1 (2014)Google Scholar
  3. 3.
    Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Collect. Rev. Nat. J. 7, 12647 (2010)Google Scholar
  4. 4.
    Cheng, F., Liang, J., Tao, Z., et al.: Functional materials for rechargeable batteries. Adv. Mater. 23, 1695 (2011)Google Scholar
  5. 5.
    Marom, R., Francis, A.S., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011)Google Scholar
  6. 6.
    Dubal, D.P., Ayyad, O., Ruiz, V., et al.: Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777 (2015)Google Scholar
  7. 7.
    Akram, U., Khalid, M., Shafiq, S., et al.: An innovative hybrid wind-solar and battery-supercapacitor microgrid system—Development and optimization. IEEE Access 5, 25897 (2017)Google Scholar
  8. 8.
    Burke, A.: Ultracapacitors: why, how, and where is the technology. J. Power Sources 91, 37 (2000)Google Scholar
  9. 9.
    Zhang, Y., Feng, H., Wu, X.: Progress of electrochemical capacitor electrode materials: A review. Int. J. Hyd. Energy 34, 4889 (2009)Google Scholar
  10. 10.
    Thakur, A.K., Choudhary, R.B., Majumder, M., et al.: In-situ integration of waste coconut shell derived activated carbon/polypyrrole/rare earth metal oxide [Eu2O3]: a novel step towards ultrahigh volumetric capacitance. Electrochim. Acta 251, 532 (2017)Google Scholar
  11. 11.
    Conway, B.E., Pell, J.: Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. G. Pell J. Sol. State Electrochem. 7, 637 (2003)Google Scholar
  12. 12.
    Thakur, A.K., Majumder, M., Choudhary, R.B., et al.: MoS2 flakes integrated with boron and nitrogen-doped carbon: striking gravimetric and volumetric capacitive performance for supercapacitor applications. J. Power Sources 402, 163 (2018)Google Scholar
  13. 13.
    Majumder, M., Choudhary, R.B., Koiry, S.P., et al.: Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochim. Acta 248, 98 (2017)Google Scholar
  14. 14.
    Conway, B.E., Murphy, O.J., Srinivasan, S. (eds).: Electrochemistry in Transition: From the 20th to the 21st Century. Springer Science & Business Media (2013)Google Scholar
  15. 15.
    Yu, A., Chabot, V., Zhang, J.: Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. J. Electrochem. Supercapacitors Energy Storage Deliv. Fundam. Appl. (2013)Google Scholar
  16. 16.
    Lu, M.: Supercapacitors: Materials, Systems, and Applications. Wiley, New York (2013)Google Scholar
  17. 17.
    Yassine, M., Drazen, F.: Performance of commercially available supercapacitors. Energies 10, 1340 (2017)Google Scholar
  18. 18.
    Monthéard, R., Bafleur, M., Boitier, V., et al.: Coupling supercapacitors and aeroacoustic energy harvesting for autonomous wireless sensing in aeronautics applications. Energy Harvest. Syst. 3, 265 (2016)Google Scholar
  19. 19.
    Chen, L., Ji, T., Mu, L., et al.: Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111, 839 (2017)Google Scholar
  20. 20.
    Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)Google Scholar
  21. 21.
    Zheng, Y., Yang, Y., Chen, S., et al.: Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm 18, 4218 (2016)Google Scholar
  22. 22.
    Bose, S., Kuila, T., Mishra, A.K., et al.: Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22, 767 (2012)Google Scholar
  23. 23.
    Zhang, L., Zhou, L.R., Zhao, X.S.: Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983 (2010)Google Scholar
  24. 24.
    Brownson, D.A.C., Kampouris, D.K., Banks, C.E.: An overview of graphene in energy production and storage applications. J. Power Sources 196, 4873 (2011)Google Scholar
  25. 25.
    Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)Google Scholar
  26. 26.
    Hou, J., Shao, Y., Ellis, M.W., et al.: Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13, 15384 (2011)Google Scholar
  27. 27.
    Seredych, M., Hulicova-Jurcakova, D., Lu, G.Q., et al.: Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46, 1475 (2008)Google Scholar
  28. 28.
    Li, H., Xi, H., Zhu, S., et al.: Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Micropor. Mesopor. Mat. 96, 357 (2006)Google Scholar
  29. 29.
    Kim, S.S., Kadoma, Y., Ikuta, H.: Electrochemical performance of natural graphite by surface modification using aluminum. Electrochem. Solid-State Lett. 4, 109 (2001)Google Scholar
  30. 30.
    Boukhvalov, D.W., Katsnelson, M.I.: Chemical functionalization of graphene with defects. Nano Lett. 8, 4373 (2008)Google Scholar
  31. 31.
    Zhang, X., Cheng, X., Zhang, Q.J.: Where do batteries end and supercapacitors begin? Energy Chem. 25, 967 (2016)Google Scholar
  32. 32.
    Roldan, S., Barreda, D., Granda, M., et al.: An approach to classification and capacitance expressions in electrochemical capacitors technology. Phys. Chem. Chem. Phys. 17, 1084 (2015)Google Scholar
  33. 33.
    Helmholtz, H.V.: Ann. Phys. (Leipzig) 89, 21 (1853)Google Scholar
  34. 34.
    Gouy, M.: Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl. 9, 457 (1910)Google Scholar
  35. 35.
    Chapman, D.: LI. A contribution to the theory of electrocapillarity. London, Edinburgh Dublin Philos. Mag. J. Sci. 25, 475 (1913)Google Scholar
  36. 36.
    Becker, H.I.: General Electric. U.S. Patent 2 800 616 (1957)Google Scholar
  37. 37.
    Zhang, S., Pan.: Supercapacitors performance evaluation. Adv. Energy Mater. 5, 1401401 (2015)Google Scholar
  38. 38.
    Angelinetta, C., Trasatti, S., Atanososka, L.D., et al.: Surface properties of RuO2+ IrO2 mixed oxide electrodes. J. Electroanal. Chem. Interf. Electrochem. 214, 535 (1986)Google Scholar
  39. 39.
    Liu, T., Pell, W.G., Conway, B.E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42, 3541 (1997)Google Scholar
  40. 40.
    Dupont, M.F., Donne, S.W.: Charge storage mechanisms in electrochemical capacitors: effects of electrode properties on performance. J. Power Sources 326, 613 (2016)Google Scholar
  41. 41.
    Lin, Z., Taberna, P.L., Simon, P. Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr. Opin. Electrochem. (2018)Google Scholar
  42. 42.
    Freeborn, T.J., Maundy, B., Elwakil, A.S.: Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sust. Energy 4, 9 (2015)Google Scholar
  43. 43.
    Conway, B.E., Birss, V., Wojtowicz, J.: The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1 (1997)Google Scholar
  44. 44.
    Conway, B.E.: Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media (2013)Google Scholar
  45. 45.
    Stoller, M.D., Ruoff, R.S.: Best practice methods for determining an electrode material's performance for ultracapacitors. Energy Environ. Sci. 3, 1294 (2010)Google Scholar
  46. 46.
    Korotcenkov, G.: Metal Oxides in Supercapacitors. Elsevier (2017)Google Scholar
  47. 47.
    Sevilla, M., Fuertes, A.B.: Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069 (2014)Google Scholar
  48. 48.
    Wang, H., Xu, Z., Kohandehghan, A., et al.: Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7, 5131 (2013)Google Scholar
  49. 49.
    Qu, D., Shi, H.: Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99 (1998)Google Scholar
  50. 50.
    Frackowiak, E., Meller, M., Menzel, J., et al.: Redox-active electrolyte for supercapacitor application. Faraday Discuss. 172, 179 (2014)Google Scholar
  51. 51.
    Chen, W., Rakhi, R.B., Alshareef, H.N., et al.: Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale 5, 4134 (2013)Google Scholar
  52. 52.
    Tomiyasu, H., Shikata, H., Takao, K., et al.: An aqueous electrolyte of the widest potential window and its superior capability for capacitors. Sci. Rep. 7, 45048 (2017)Google Scholar
  53. 53.
    Wang, Q., Yan, J., Fan, Z.: Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729 (2016)Google Scholar
  54. 54.
    Zhang, C., Lv, W., Tao, Y., et al.: Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390 (2015)Google Scholar
  55. 55.
    Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)Google Scholar
  56. 56.
    Zhong, C., Deng, Y., Hu, W., et al.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484 (2015)Google Scholar
  57. 57.
    Lim, E.L., Yap, C.C., Jumali, M.H.H.: A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett. 10, 27 (2018)Google Scholar
  58. 58.
    Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Dresselhaus Adv. Phys. 51, 1 (2002)Google Scholar
  59. 59.
    Yu, Z., Tetard, L., Zhai, L., et al.: Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702 (2015)Google Scholar
  60. 60.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al.: Graphene-based composite materials. Nature 442, 282 (2006)Google Scholar
  61. 61.
    Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., et al.: Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499 (2007)Google Scholar
  62. 62.
    Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nature Nanotechnol. 4, 217 (2009)Google Scholar
  63. 63.
    Ng, S.W., Noor, N., Zheng, Z.: Graphene-based two-dimensional Janus materials. NPG Asia Mater. 1, (2018)Google Scholar
  64. 64.
    Huang, Y., Liang, J., Chen, Y.: An overview of the applications of graphene‐based materials in supercapacitors. Small 8, 1805 (2012)Google Scholar
  65. 65.
    Novoselov, K.S., Fal, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192 (2012)Google Scholar
  66. 66.
    Ohta, T., Bostwick, A., Seyller, T.: Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)Google Scholar
  67. 67.
    Loh, K.P., Bao, Q., Ang, P.K., et al.: The chemistry of graphene. J. Mater. Chem. 20, 2277 (2010)Google Scholar
  68. 68.
    Yuan, W., Liu, A., Huang, L., et al.: High‐performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25, 766 (2013)Google Scholar
  69. 69.
    Kulkarni, H.B., Tambe, P., Joshi, G.M.: Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Compos. Interfaces 25, 381 (2018)Google Scholar
  70. 70.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nanosci. Technol. Collect. Rev. Nat. J. 11 (2010)Google Scholar
  71. 71.
    Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027 (2012)Google Scholar
  72. 72.
    Eswaraiah, V., Aravind, S.S.J., Ramaprabhu, S.: Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 21, 6800 (2011)Google Scholar
  73. 73.
    Tour, J.M.: Top-down versus bottom-up fabrication of graphene-based electronics. Chem. Mater. 26, 163 (2013)Google Scholar
  74. 74.
    Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700 (2015)Google Scholar
  75. 75.
    Dresselhaus, M.S., Araujo, P.T.: Perspectives on the nobel prize in physics for graphene, ACS Nano 4, 6297 (2010)Google Scholar
  76. 76.
    Jayasena, B., Subbiah, S.: A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6, 95 (2011)Google Scholar
  77. 77.
    Chen, J., Duan, M., Chen, G.: Continuous mechanical exfoliation of graphene sheets via three-roll mill. J. Mater. Chem. 22, 19625 (2012)Google Scholar
  78. 78.
    Li, X., Magnuson, C.W., Venugopal, A., et al.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816 (2011)Google Scholar
  79. 79.
    Wei, D., Liu, Y., Wang, Y., et al.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752 (2009)Google Scholar
  80. 80.
    Reina, A., Jia, X., Ho, J., et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2008)Google Scholar
  81. 81.
    Mattevi, C., Kim, H., Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324 (2011)Google Scholar
  82. 82.
    Dey, A., Chroneos, A., Braithwaite, NStJ, et al.: Plasma engineering of graphene. Appl. Phys. Rev. 3, 021301 (2016)Google Scholar
  83. 83.
    Cheng, L., Yun, K., Lucero, A., et al.: Low temperature synthesis of graphite on Ni films using inductively coupled plasma enhanced CVD. J. Mater. Chem. C 3, 5192 (2015)Google Scholar
  84. 84.
    Zhang, X.Y., Ha Sun, S., Sun, X.J., et al.: Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light-Sci. Appl. 5, 16130 (2016)Google Scholar
  85. 85.
    Hernandez, Y., Nicolosi, V., Lotya, M., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008)Google Scholar
  86. 86.
    Stankovich, S., Dikin, D.A., Piner, R.D., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007)Google Scholar
  87. 87.
    Gilje, S., Song, H., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 3394 (2007)Google Scholar
  88. 88.
    Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010)Google Scholar
  89. 89.
    Gaskill, D.K., Jernigan, G., Campbell, P., et al.: Epitaxial graphene growth on SiC wafers. ECS Trans. 19, 117 (2009)Google Scholar
  90. 90.
    Emtsev, K.V., Speck, F., Seyller, T., Ley, L., et al.: Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008)Google Scholar
  91. 91.
    Kang, K., Cho, Y., Yu, K.J.: Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines 9, 263 (2018)Google Scholar
  92. 92.
    Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., et al.: Synthesis of graphene. Int. Nano Lett. 6, 65 (2016)Google Scholar
  93. 93.
    Maiti, U.N., Lee, W.J., Lee, J.M., et al.: 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 26, 40 (2014)Google Scholar
  94. 94.
    Mishra, A.K., Ramaprabhu, S.: Functionalized graphene-based nanocomposites for supercapacitor application. J. Phys. Chem. C 115, 14006 (2011)Google Scholar
  95. 95.
    Chua, C.K., Pumera, M.: Covalent chemistry on graphene. Chem. Soc. Rev. 42, 3222 (2013)Google Scholar
  96. 96.
    Liu, J., Tang, J., Gooding, J.J.: Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 22, 12435 (2012)Google Scholar
  97. 97.
    Georgakilas, V., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156 (2012)Google Scholar
  98. 98.
    Lonkar, S.P., Deshmukh, Y.S., Abdala, A.A.: Recent advances in chemical modifications of graphene. Nano Res. 8, 1039 (2015)Google Scholar
  99. 99.
    Salavagione, H.J., Martínez, G., Ellis, G.: Recent advances in the covalent modification of graphene with polymers. Macromol. Rapid Comm. 32, 1771 (2011)Google Scholar
  100. 100.
    Li, Z.F., Zhang, H., Liu, Q., et al.: Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 71, 257 (2014)Google Scholar
  101. 101.
    Xu, Y., Shi, G.: Assembly of chemically modified graphene: methods and applications. J. Mater. Chem. 21, 3311 (2011)Google Scholar
  102. 102.
    Fang, Y., Luo, B., Jia, Y., et al.: Renewing functionalized graphene as electrodes for high‐performance supercapacitors. Adv. Mater. 24, 6348 (2012)Google Scholar
  103. 103.
    Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K.: Synthesis, structure, and properties of boron‐and nitrogen‐doped graphene. Adv. Mater. 21, 4726 (2009)Google Scholar
  104. 104.
    Arnold, R., Melvin, B.: Method of doping epitaxially grown semiconductor material. U.S. Patent 3,361,600, Issued January 2 (1968)Google Scholar
  105. 105.
    Wang, X., Li, X., Zhang, L., et al.: N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768 (2009)Google Scholar
  106. 106.
    Reddy, A.L.M., Srivastava, A., Gowda, S.R.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337 (2010)Google Scholar
  107. 107.
    Wen, Z., Wang, X., Mao, S., et al.: Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor. Adv. Mater. 24, 5610 (2012)Google Scholar
  108. 108.
    Ke, Q., John, W.: Graphene-based materials for supercapacitor electrodes–a review. Materiomics 2, 37 (2016)Google Scholar
  109. 109.
    Singh, K.P., Bhattacharjya, D., Razmjooei, F., et al.: Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Sci. Rep. 6, 31555 (2016)Google Scholar
  110. 110.
    Jeong, H.M., Lee, J.W., Shin, W.H., et al.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472 (2011)Google Scholar
  111. 111.
    Giovannetti, G., Khomyakov, P.A., Brocks, G., et al.: Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)Google Scholar
  112. 112.
    Farmer, D.B., Golizadeh, M.R., Perebeinos, V., et al.: Chemical doping and electron−hole conduction asymmetry in graphene devices. Nano Lett. 9, 388 (2008)Google Scholar
  113. 113.
    Liu, H., Kuila, T., Kim, N.H., et al.: In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A1, 3739 (2013)Google Scholar
  114. 114.
    Zhang, L., Zhou, L., Yang, M., et al.: Photo‐induced free radical modification of graphene. Small 9, 1134 (2013)Google Scholar
  115. 115.
    Bahr, J.L., Yang, J., Kosynkin, D.V., et al.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001)Google Scholar
  116. 116.
    Bekyarova, E., Itkis, M.E., Ramesh, P., et al.: Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336 (2009)Google Scholar
  117. 117.
    Chehimi, M.M. (eds).: Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science. Wiley, New York (2012)Google Scholar
  118. 118.
    Yu, D.S., Kuila, T., Kim, N.H., et al.: Effects of covalent surface modifications on the electrical and electrochemical properties of graphene using sodium 4-aminoazobenzene-4′-sulfonate. Carbon 54, 310 (2013)Google Scholar
  119. 119.
    Hamilton, C.E., Lomeda, J.R., Sun, Z., et al.: Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 3, 138 (2010)Google Scholar
  120. 120.
    Palanisamy, S., Chen, S.M., Sarawathi, R.: A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens. Actuator B-Chem. 166, 372 (2012)Google Scholar
  121. 121.
    Chen, S., Hu, A.: Recent advances of the Bergman cyclization in polymer science. Sci. China Chem. 58, 1710 (2015)Google Scholar
  122. 122.
    Xiao, Y., Hu, A.: Bergman cyclization in polymer chemistry and material science. Macromol. Rapid Comm. 32, 1688 (2011)Google Scholar
  123. 123.
    Layek, R.K., Nandi, A.K.: A review on synthesis and properties of polymer functionalized graphene. Polymer 54, 5087 (2013)Google Scholar
  124. 124.
    Dickert, F.L., Alkire, C.R., Kolb, M.D., Lipkowski, J., Ross, P.N., Richard, C., Alkire, Dieter M. Kolb, Jacek Lipkowski, Philipp, N. Ross. (eds).: Chemically modified electrodes. Anal. Bioanal. Chem. 398, 579 (2010)Google Scholar
  125. 125.
    Kuila, T., Bose, S., Mishra, A.K., et al.: Chemical functionalization of graphene and its applications. Prog. Mater Sci. 57, 1061 (2012)Google Scholar
  126. 126.
    Hsiao, M.C., Liao, S.H., Yen, M.Y., et al.: Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl. Mater. Interfaces 2, 3092 (2010)Google Scholar
  127. 127.
    Shen, J., Shi, M., Ma, H., Yan, B., Li, N., Hu, Y., Ye, M.: Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets. J. Colloid Interf. Sci. 352, 366 (2010)Google Scholar
  128. 128.
    Wang, H.W., Wu, H.Y., Chang, Y.Q., et al.: Tert-butylhydroquinone-decorated graphene nanosheets and their enhanced capacitive behaviors. Chinese Sci. Bull. 56, 2092 (2011)Google Scholar
  129. 129.
    Anjos, D.M., McDonough, J.K., Perre, E., et al.: Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy 2, 702 (2013)Google Scholar
  130. 130.
    Anjos, D.M., Kolesnikov, A.I., Wu, Z., et al.: Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon. Carbon 52, 150 (2013)Google Scholar
  131. 131.
    Jana, M., Saha, S., Khanra, P., et al.: Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 3, 7323 (2015)Google Scholar
  132. 132.
    Shang, Q.Y., Bernstein, E.R.: Energetics, dynamics, and reactions of Rydberg state molecules in van der Waals clusters. Chem. Rev. 94, 2015 (1994)Google Scholar
  133. 133.
    Tarakeshwar, P., Kim, K.S., Kraka, E., et al.: Structure and stability of fluorine-substituted benzene-argon complexes: The decisive role of exchange-repulsion and dispersion interactions. J. Chem. Phys. 115, 6018 (2001)Google Scholar
  134. 134.
    Burley, S.K., Petsko, G.A.: Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23 (1985)Google Scholar
  135. 135.
    Kwon, J.Y., Singh, N.J., Kim, H.N., et al.: Fluorescent GTP-sensing in aqueous solution of physiological pH. J. Am. Chem. Soc. 126, 8892 (2004)Google Scholar
  136. 136.
    Tarakeshwar, P., Choi, H.S., Kim, K.S.: Olefinic vs aromatic π−h interaction: a theoretical investigation of the nature of interaction of first-row hydrides with ethene and benzene. J. Am. Chem. Soc. 123, 3323 (2001)Google Scholar
  137. 137.
    Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S., et al.: Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300 (2010)Google Scholar
  138. 138.
    Liang, J., Huang, Y., Zhang, L., et al.: Molecular‐level dispersion of graphene into poly [vinyl alcohol] and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19, 2297 (2009)Google Scholar
  139. 139.
    Du, Q.S., Wang, Q.Y., Du, L.Q., et al.: Theoretical study on the polar hydrogen-π [Hp-π] interactions between protein side chains. Chem. Cent. J. 7, 92 (2013)Google Scholar
  140. 140.
    Kim, D., Hu, S., Tarakeshwar, P., et al.: Cation−π interactions: a theoretical investigation of the interaction of metallic and organic cations with alkenes, arenes, and heteroarenes. J. Phys. Chem. A 107, 1228 (2003)Google Scholar
  141. 141.
    Wang, W., Hobza, P.: Chemphyschem: theoretical study on the complexes of benzene with isoelectronic nitrogen‐containing heterocycles. Eur. J. Chem. Phys. Phys. Chem. 9, 1003 (2008)Google Scholar
  142. 142.
    Dougherty, D.A., Stauffer, D.A.: Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science 250, 1558 (1990)Google Scholar
  143. 143.
    Singh, N.J., Shin, D., Lee, H.M., et al.: Structural basis of triclosan resistance. J. Struct. Biol. 174, 173 (2011)Google Scholar
  144. 144.
    Ma, J.C., Dougherty, D.A.: The cation-π interaction. Chem. Rev. 97, 1303 (1997)Google Scholar
  145. 145.
    Quiñonero, D., Garau, C., Rotger, C., et al.: Anion–π interactions: do they exist? Angew. Chem. 114, 3539 (2002)Google Scholar
  146. 146.
    Guha, S., Saha, S.: Fluoride ion sensing by an anion−π interaction. J. Am. Chem. Soc. 132, 17674 (2010)Google Scholar
  147. 147.
    Schottel, B.L., Chifotides, H.T., Dunbar, K.R.: Anion-π interactions. Chem. Soc. Rev. 37, 68 (2008)Google Scholar
  148. 148.
    Mooibroek, T.J., Black, C.A., Gamez, P., et al.: What’s new in the realm of anion−π binding interactions? putting the anion-π interaction in perspective. Cryst. Growth Des. 8, 1082 (2008)Google Scholar
  149. 149.
    Liu, J., Yang, W., Zareie, H.M., et al.: pH-detachable polymer brushes formed using titanium−diol coordination chemistry and living radical polymerization [RAFT]. Macromolecules 42, 2931 (2009)Google Scholar
  150. 150.
    Sutter, P., Sadowski, J.T., Sutter, E.A.: Chemistry under cover: tuning metal−graphene interaction by reactive intercalation. J. Am. Chem. Soc. 132, 8175 (2010)Google Scholar
  151. 151.
    Liang, C., Li, Z., Dai, S.: Mesoporous carbon materials: synthesis and modification. Angew Chem. Int. Ed. 47, 3696 (2008)Google Scholar
  152. 152.
    Ke, Q., Liu, Y., Liu, H., et al.: Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Adv. 4, 26398 (2014)Google Scholar
  153. 153.
    Yoon, M., Choi, W.M., Baik, H., et al.: Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6, 6803 (2012)Google Scholar
  154. 154.
    Lee, J.S., Kim, S.I., Yoon, J.C.: Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7, 6047 (2013)Google Scholar
  155. 155.
    Park, S.H., Kim, H.K., Yoon, S.B., et al.: Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 27, 457 (2015)Google Scholar
  156. 156.
    Cao, X., Shi, Y., Shi, W., et al.: Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 316 (2011)Google Scholar
  157. 157.
    Dong, X.C., Xu, H., Wang, X.W., et al.: 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, 3206 (2012)Google Scholar
  158. 158.
    He, Y., Chen, W., Li, X., et al.: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174 (2012)Google Scholar
  159. 159.
    Cong, H.P., Ren, X.C., Wang, P.: Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693 (2012)Google Scholar
  160. 160.
    Xu, Y., Sheng, K., Li, C., et al.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324 (2010)Google Scholar
  161. 161.
    Xu, Y., Chen, C., Zhao, Z., et al.: Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nanostructured Composite Materials Laboratory, Department of PhysicsIndian Institute of Technology (Indian School of Mines) DhanbadDhanbadIndia
  2. 2.Department of PhysicsIndian Institute of Science Education and Research BerhampurBerhampurIndia

Personalised recommendations