Recent Progress in Graphene Research for the Solar Cell Application

  • Raju Nandi
  • Soumyadeep Sinha
  • Jaeyeong Heo
  • Soo-Hyun Kim
  • Dip K. NandiEmail author
Part of the Carbon Nanostructures book series (CARBON)


In the past few years, tremendous efforts have been devoted to the synthesis and application of graphene and its derivatives toward the development of graphene-based solar photovoltaics. With their extraordinary electrical, mechanical, and thermal properties graphene-based materials are considered as an ideal candidate for the fabrication of low-cost and scalable photovoltaic devices. In fact, graphene-based materials have been successfully implemented in all types of photovoltaics including Si-based Schottky junction solar cells to the perovskite solar cells. Although, graphene-based solar cells have not yet been commercially applied and most of them are still limited to the research and development phase, however, it has a great potential to replace conventional transparent conducting oxides. This chapter provides a comprehensive overview of the applications of graphene and its derivatives, namely graphene oxide and reduced graphene oxide in the field of organic, perovskite, and dye-sensitized solar cells. The key challenges of the graphene-based solar cells are also addressed along with their promising future in flexible photovoltaics.


Graphene and its derivatives Solar cells Power conversion efficiency 


  1. 1.
    Ellabban, O., Abu-Rub, H., Blaabjerg, F.: Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748 (2014)Google Scholar
  2. 2.
    Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Ostergaard, P.A., Möller, B., Nielsen, S., Ridjan, I., KarnOe, P., Sperling, K., Hvelplund, F.K.: Smart energy systems for coherent 100% renewable energy and transport solutions. Appl. Energy 145, 139 (2015)Google Scholar
  3. 3.
    Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 15, 1513 (2011)Google Scholar
  4. 4.
    Branker, K., Pathak, M.J.M., Pearce, J.M.: A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 15, 4470 (2011)Google Scholar
  5. 5.
    Yan, J., Saunders, B.R.: Third-generation solar cells: A review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 4, 43286 (2014)Google Scholar
  6. 6.
    Yamaguchi, M., Lee, K., Araki, K.: A review of recent progress in heterogeneous silicon tandem solar cells. J. Phys. D Appl. Phys. 51, 133002 (2018)Google Scholar
  7. 7.
    Chopra, K.L., Paulson, P.D., Dutta, V.: Thin-film solar cells: an overview. Prog. Photovoltaics Res. Appl. 12, 69 (2004)Google Scholar
  8. 8.
    Matthew, R.B.K., Allen, J., Tung, V.C.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132 (2010)Google Scholar
  9. 9.
    Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127 (2010)Google Scholar
  10. 10.
    Sun, Y., Zhang, W., Chi, H., Liu, Y., Hou, C.L., Fang, D.: Recent development of graphene materials applied in polymer solar cell. Renew. Sustain. Energy Rev. 43, 973 (2015)Google Scholar
  11. 11.
    De, S., Coleman, J.N.: Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713 (2010)Google Scholar
  12. 12.
    Ubani, C.A., Ibrahim, M.A., Teridi, M.A.M., Sopian, K., Ali, J., Chaudhary, K.T.: Application of graphene in dye and quantum dots sensitized solar cell. Sol. Energy 137, 531 (2016)Google Scholar
  13. 13.
    Sim, J.K., Kang, S., Nandi, R., Jo, J.Y., Jeong, K.U., Lee, C.R.: Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil. Sol. Energy 162, 357 (2018)Google Scholar
  14. 14.
    Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D.: Graphene-on-silicon schottky junction solar cells. Adv. Mater. 22, 2743 (2010)Google Scholar
  15. 15.
    Bouclé, J., Herlin-Boime, N.: The benefits of graphene for hybrid perovskite solar cells. Synth. Met. 222, 3 (2016)Google Scholar
  16. 16.
    Mahmoudi, T., Wang, Y., Hahn, Y.B.: Graphene and its derivatives for solar cells application. Nano Energy 47, 51 (2018)Google Scholar
  17. 17.
    Acik, M., Darling, S.B.: Graphene in perovskite solar cells: Device design, characterization and implementation. J. Mater. Chem. A 4, 6185 (2016)Google Scholar
  18. 18.
    Iwan, A., Chuchmała, A.: Perspectives of applied graphene: Prog. Polym. Sci. 37, 1805 (2012)Google Scholar
  19. 19.
    Steim, R., Kogler, F.R., Brabec, C.J.: Interface materials for organic solar cells. J. Mater. Chem. 20, 2499 (2010)Google Scholar
  20. 20.
    Wang, F., Xu, Q., Tan, Z., Li, L., Li, S., Hou, X., Sun, G., Tu, X., Hou, J., Li, Y.: Efficient polymer solar cells with a solution- processed and thermal annealing-free RuO2 anode buffer layer. J. Mater. Chem. A 2, 1318 (2014)Google Scholar
  21. 21.
    Wang, J., Wang, Y., He, D., Liu, Z., Wu, H., Wang, H., Zhou, P., Fu, M.: Polymer bulk heterojunction photovoltaic devices based on complex donors and solution-processable functionalized graphene oxide. Sol. Energy Mater. Sol. Cells 96, 58 (2012)Google Scholar
  22. 22.
    Yu, D., Park, K., Durstock, M., Dai, L.: Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J. Phys. Chem. Lett. 2, 1113 (2011)Google Scholar
  23. 23.
    Wang, S., Goh, B.M., Manga, K.K., Bao, Q., Yang, P., Loh, K.P.: Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties. ACS Nano 4, 6180 (2010)Google Scholar
  24. 24.
    Liu, Z., He, D., Wang, Y., Wu, H., Wang, J.: Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 94, 1196 (2010)Google Scholar
  25. 25.
    Gupta, V., Chaudhary, N., Srivastava, R., Sharma, G.D., Bhardwaj, R., Chand, S.: Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960 (2011)Google Scholar
  26. 26.
    Wang, X., Zhi, L., Tsao, N., Tomović, Ž., Li, J., Müllen, K.: Transparent carbon films as electrodes in organic solar cells. Angew. Chemie-Int. Ed. 47, 2990 (2008)Google Scholar
  27. 27.
    Shin, D.H., Jang, C.W., Lee, H.S., Seo, S.W., Choi, S.H.: Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes. ACS Appl. Mater. Interfaces 10, 3596 (2018)Google Scholar
  28. 28.
    Valentini, L., Cardinali, M., Bittolo Bon, S., Bagnis, D., Verdejo, R., Lopez-Manchado, M.A., Kenny, J.M.: Use of butylamine modified graphene sheets in polymer solar cells. J. Mater. Chem. 20, 995 (2010)Google Scholar
  29. 29.
    Yu, D., Yang, Y., Durstock, M., Baek, J., Dai, L.: Soluble P3HT-grafted graphene for efficient bilayer−heterojunction photovoltaic devices. ACS Nano 4, 5633 (2010)Google Scholar
  30. 30.
    Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M., Zhang, H.: Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4, 5263 (2010)Google Scholar
  31. 31.
    Un Jung, Y., Na, S.-I., Kim, H.-K., Jun Kang, S.: Organic photovoltaic devices with low resistance multilayer graphene transparent electrodes. J. Vac. Sci. Technol. A 30, 050604 (2012)Google Scholar
  32. 32.
    Huang, J.H., Fang, J.H., Liu, C.C., Chu, C.W.: Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano 5, 6262 (2011)Google Scholar
  33. 33.
    Lee, Y.Y., Tu, K.H., Yu, C.C., Li, S.S., Hwang, J.Y., Lin, C.C., Chen, K.H., Chen, L.C., Chen, H.L., Chen, C.W.: Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5, 6564 (2011)Google Scholar
  34. 34.
    Jo, G., Na, S.I., Oh, S.H., Lee, S., Kim, T.S., Wang, G., Choe, M., Park, W., Yoon, J., Kim, D.Y., Kahng, Y.H., Lee, T.: Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Appl. Phys. Lett. 97, 213301 (2010)Google Scholar
  35. 35.
    Liu, Z., Li, J., Sun, Z.-H., Tai, G., Lau, S.-P., Yan, F.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. ACS Nano 6, 810 (2012)Google Scholar
  36. 36.
    Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.W., Stranks, S.D., Snaith, H.J., Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582 (2015)Google Scholar
  37. 37.
    Heo, J.H., Shin, D.H., Kim, S., Jang, M.H., Lee, M.H., Seo, S.W., Choi, S.H., Im, S.H.: Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes. Chem. Eng. J. 323, 153 (2017)Google Scholar
  38. 38.
    Yoon, J., Sung, H., Lee, G., Cho, W., Ahn, N., Jung, H.S., Choi, M.: Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ. Sci. 10, 337 (2017)Google Scholar
  39. 39.
    Sung, H., Ahn, N., Jang, M.S., Lee, J.K., Yoon, H., Park, N.G., Choi, M.: Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6, 2 (2016)Google Scholar
  40. 40.
    You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 27, 3632 (2015)Google Scholar
  41. 41.
    Lang, F., Gluba, M.A., Albrecht, S., Rappich, J., Korte, L., Rech, B., Nickel, N.H.: Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J. Phys. Chem. Lett. 6, 2745 (2015)Google Scholar
  42. 42.
    Guo, F., Azimi, H., Hou, Y., Przybilla, T., Hu, M., Bronnbauer, C., Langner, S., Spiecker, E., Forberich, K., Brabec, C.J.: High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7, 1642 (2015)Google Scholar
  43. 43.
    Li, Z., Kulkarni, S.A., Boix, P.P., Shi, E., Cao, A., Fu, K., Batabyal, S.K., Zhang, J., Xiong, Q., Wong, L.H., Mathews, N., Mhaisalkar, S.G.: Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797 (2014)Google Scholar
  44. 44.
    Lang, F., Gluba, M.A., Albrecht, S., Shargaieva, O., Rappich, J., Korte, L., Rech, B., Nickel, N.H.: In situ graphene doping as a route toward efficient perovskite tandem solar cells. Phys. Status Solidi Appl. Mater. Sci. 213, 1989 (2016)Google Scholar
  45. 45.
    Kim, H., Lim, K.-G., Lee, T.-W.: Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9, 12 (2016)Google Scholar
  46. 46.
    Kim, B.J., Kim, D.H., Lee, Y.Y., Shin, H.W., Han, G.S., Hong, J.S., Mahmood, K., Ahn, T.K., Joo, Y.C., Hong, K.S., Park, N.G., Lee, S., Jung, H.S.: Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ. Sci. 8, 916 (2015)Google Scholar
  47. 47.
    Heo, J.H., Lee, M.H., Han, H.J., Patil, B.R., Yu, J.S., Im, S.H.: Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 4, 1572 (2016)Google Scholar
  48. 48.
    Yeo, J.S., Kang, R., Lee, S., Jeon, Y.J., Myoung, N.S., Lee, C.L., Kim, D.Y., Yun, J.M., Seo, Y.H., Kim, S.S., Na, S.I.: Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96 (2015)Google Scholar
  49. 49.
    Wu, Z., Bai, S., Xiang, J., Yuan, Z., Yang, Y., Cui, W., Gao, X., Liu, Z., Jin, Y., Sun, B.: Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6, 10505 (2014)Google Scholar
  50. 50.
    Liu, T., Kim, D., Han, H., Bin Mohd Yusoff, A.R., Jang, J.: Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells. Nanoscale 7, 10708 (2015)Google Scholar
  51. 51.
    Luo, Q., Zhang, Y., Liu, C., Li, J., Wang, N., Lin, H.: Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3, 15996 (2015)Google Scholar
  52. 52.
    Umeyama, T., Matano, D., Baek, J., Gupta, S., Ito, S., (Ravi) Subramanian, V., Imahori, H.: Boosting of the performance of perovskite solar cells through systematic introduction of reduced graphene oxide in TiO2 layers. Chem. Lett. 44, 1410 (2015)Google Scholar
  53. 53.
    Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.-W., Park, N.-G., Kang, B.K., Lee, J.-K., Cho, I.S., Yoon, D.H., Jung, H.S.: Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces 7, 23521 (2015)Google Scholar
  54. 54.
    Wang, J.T.W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., Nicholas, R.J.: Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724 (2014)Google Scholar
  55. 55.
    Tavakoli, M.M., Tavakoli, R., Hasanzadeh, S., Mirfasih, M.H.: Interface engineering of perovskite solar cell using a reduced-graphene scaffold. J. Phys. Chem. C 120, 19531 (2016)Google Scholar
  56. 56.
    Zhao, J., Cai, B., Luo, Z., Dong, Y., Zhang, Y., Xu, H., Hong, B., Yang, Y., Li, L., Zhang, W., Gao, C.: Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment. Sci. Rep. 6, 1 (2016)Google Scholar
  57. 57.
    Hu, X., Jiang, H., Li, J., Ma, J., Yang, D., Liu, Z., Gao, F., Liu, S.: Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer. Nanoscale 9, 8274 (2017)Google Scholar
  58. 58.
    Cao, J., Liu, Y.M., Jing, X., Yin, J., Li, J., Xu, B., Tan, Y.Z., Zheng, N.: Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 137, 10914 (2015)Google Scholar
  59. 59.
    Bi, E., Chen, H., Xie, F., Wu, Y., Chen, W., Su, Y., Islam, A., Grätzel, M., Yang, X., Han, L.: Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 1 (2017)Google Scholar
  60. 60.
    Kim, T., Kang, J.H., Yang, S.J., Sung, S.J., Kim, Y.S., Park, C.R.: Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices. Energy Environ. Sci. 7, 3403 (2014)Google Scholar
  61. 61.
    Jiao, Y., Ma, F., Gao, G., Wang, H., Bell, J., Frauenheim, T., Du, A.: Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation. RSC Adv. 5, 82346 (2015)Google Scholar
  62. 62.
    Kim, G.H., Jang, H., Yoon, Y.J., Jeong, J., Park, S.Y., Walker, B., Jeon, I.Y., Jo, Y., Yoon, H., Kim, M., Baek, J.B., Kim, D.S., Kim, J.Y.: Fluorine functionalized graphene nano platelets for highly stable inverted perovskite solar cells. Nano Lett. 17, 6385 (2017)Google Scholar
  63. 63.
    Zhang, Y., Li, H., Kuo, L., Dong, P., Yan, F.: Recent applications of draphene in dye-sensitized solar cells. Curr. Opin. Colloid Interface Sci. 20, 406 (2015)Google Scholar
  64. 64.
    Nazeeruddin, M.K., Baranoff, E., Grätzel, M.: Dye-sensitized solar cells: A brief overview. Sol. Energy 85, 1172 (2011)Google Scholar
  65. 65.
    Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)Google Scholar
  66. 66.
    Roy-Mayhew, J.D., Aksay, I.A.: Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114, 6323 (2014)Google Scholar
  67. 67.
    Wang, X., Zhi, L., Müllen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323 (2008)Google Scholar
  68. 68.
    Cottineau, T., Albrecht, A., Janowska, I., MacHer, N., Bégin, D., Ledoux, M.J., Pronkin, S., Savinova, E., Keller, N., Keller, V., Pham-Huu, C.: Synthesis of transparent vertically aligned TiO2 nanotubes on a few-layer graphene (FLG) film. Chem. Commun. 48, 1224 (2012)Google Scholar
  69. 69.
    Wu, S., Yin, Z., He, Q., Huang, X., Zhou, X., Zhang, H.: Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C 114, 11816 (2010)Google Scholar
  70. 70.
    Kim, S.R., Parvez, M.K., Chhowalla, M.: UV-reduction of graphene oxide an its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem. Phys. Lett. 483, 124 (2009)Google Scholar
  71. 71.
    Chen, T., Hu, W., Song, J., Guai, G.H., Li, C.M.: Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells. Adv. Funct. Mater. 22, 5245 (2012)Google Scholar
  72. 72.
    Yang, N.L., Zhai, J., Wang, D., Chen, Y.S., Jiang, L.: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4, 887 (2010)Google Scholar
  73. 73.
    Wang, H., Leonard, S.L., Hu, Y.H.: Promoting effect of graphene on dye-sensitized solar cells. Ind. Eng. Chem. Res. 51, 10613 (2012)Google Scholar
  74. 74.
    Tsai, T., Chiou, S., Chen, S.: Enhancement of dye-sensitized solar cells by using graphene- TiO2 composites as photoelectrochemical working electrode. Int. J. Electrochem. Sci. 6, 3333 (2011)Google Scholar
  75. 75.
    Peining, Z., Nair, A.S., Shengjie, P., Shengyuan, Y., Ramakrishna, S.: Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl. Mater. Interfaces 4, 581 (2012)Google Scholar
  76. 76.
    Tang, Y., Lee, C., Xu, J., Liu, Z., Chen, Z., He, Z., Cao, Y., Yuan, G., Song, H., Chen, L., Luo, L., Cheng, H., Zhang, W., Bello, I., Lee, S.: Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 4, 3482 (2010)Google Scholar
  77. 77.
    Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the opptical conductivity of graphene. Phys. Rev. Lett. 101, 2 (2008)Google Scholar
  78. 78.
    Long, R., English, N.J., Prezhdo, O.V.: Photo-induced charge separation across the graphene-TiO2interface is faster than energy losses: A time-domain ab initio analysis. J. Am. Chem. Soc. 134, 14238 (2012)Google Scholar
  79. 79.
    Zhang, Y., Zhang, N., Tang, Z.R., Xu, Y.J.: Graphene transforms wide band gap ZnS to a visible light photocatalyst. the new role of graphene as a macromolecular photosensitizer. ACS Nano 6, 9777 (2012)Google Scholar
  80. 80.
    Williams, K.J., Nelson, C.A., Yan, X., Li, L.S., Zhu, X.: Hot electron injection from graphene quantum dots to TiO2. ACS Nano 7, 1388 (2013)Google Scholar
  81. 81.
    Ahmad, I., Khan, U., Gun’ko, Y.K.: Graphene, carbon nanotube and ionic liquid mixtures: Towards new quasi-solid state electrolytes for dye sensitised solar cells. J. Mater. Chem. 21, 16990 (2011)Google Scholar
  82. 82.
    Jung, M.H., Kang, M.G., Chu, M.J.: Iodide-functionalized graphene electrolyte for highly efficient dye-sensitized solar cells. J. Mater. Chem. 22, 16477 (2012)Google Scholar
  83. 83.
    Velten, J.A., Carretero-González, J., Castillo-Martínez, E., Bykova, J., Cook, A., Baughman, R., Zakhidov, A.: Photoinduced optical transparency in dye-sensitized solar cells containing graphene nanoribbons. J. Phys. Chem. C 115, 25125 (2011)Google Scholar
  84. 84.
    Gun, J., Kulkarni, S.A., Xiu, W., Batabyal, S.K., Sladkevich, S., Prikhodchenko, P.V., Gutkin, V., Lev, O.: Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells. Electrochem. Commun. 19, 108 (2012)Google Scholar
  85. 85.
    Bai, H., Li, C., Wang, X., Shi, G.: On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545 (2011)Google Scholar
  86. 86.
    Neo, C.Y., Ouyang, J.: The production of organogels using graphene oxide as the gelator for use in high-performance quasi-solid state dye-sensitized solar cells. Carbon 54, 48 (2013)Google Scholar
  87. 87.
    Xu, Y., Bai, H., Lu, G., Li, C., Shi, G.: Flexible graphene films via the filtration of water-soluble. J. Am. Chem. Soc. 130, 5856 (2008)Google Scholar
  88. 88.
    Jang, H.S., Yun, J.M., Kim, D.Y., Park, D.W., Na, S.I., Kim, S.S.: Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells. Electrochim. Acta 81, 301 (2012)Google Scholar
  89. 89.
    Wu, M.-S., Zheng, Y.-J.: Electrophoresis of randomly and vertically embedded graphenenanosheets in activated carbon film as a counter electrode for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 1782 (2013)Google Scholar
  90. 90.
    Zheng, H., Neo, C.Y., Mei, X., Qiu, J., Ouyang, J.: Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells. J. Mater. Chem. 22, 14465 (2012)Google Scholar
  91. 91.
    Dong, P., Zhu, Y., Zhang, J., Hao, F., Wu, J., Lei, S., Lin, H., Hauge, R.H., Tour, J.M., Lou, J.: Vertically aligned carbon nanotubes/graphene hybrid electrode as a TCO- and Pt-free flexible cathode for application in solar cells. J. Mater. Chem. A 2, 20902 (2014)Google Scholar
  92. 92.
    Velten, J., Mozer, A.J., Li, D., Officer, D., Wallace, G., Baughman, R., Zakhidov, A.: Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Nanotechnology 23, 085201 (2012)Google Scholar
  93. 93.
    Das, S., Sudhagar, P., Verma, V., Song, D., Ito, E., Lee, S.Y., Kang, Y.S., Choi, W.: Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. Adv. Funct. Mater. 21, 3729 (2011)Google Scholar
  94. 94.
    Das, S., Sudhagar, P., Ito, E., Lee, D.Y., Nagarajan, S., Lee, S.Y., Kang, Y.S., Choi, W.: Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J. Mater. Chem. 22, 20490 (2012)Google Scholar
  95. 95.
    Kavan, L., Yum, J.H., Nazeeruddin, M.K., Grätzel, M.: Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar sells. ACS Nano 5, 9171 (2011)Google Scholar
  96. 96.
    Kavan, L., Yum, J.H., Grätzel, M.: Graphene nanoplatelets outperforming platinum as the electrocatalyst in co-bipyridine-mediated dye-sensitized solar cells. Nano Lett. 11, 5501 (2011)Google Scholar
  97. 97.
    Schriver, M., Regan, W., Loster, M., Zettl, A.: Carbon nanostructure-aSi:H photovoltaic cells with high open-circuit voltage fabricated without dopants. Solid State Commun. 150, 561 (2010)Google Scholar
  98. 98.
    Li, X., Li, C., Zhu, H., Wang, K., Wei, J., Li, X., Xu, E., Li, Z., Luo, S., Lei, Y., Wu, D.: Hybrid thin films of graphene nanowhiskers and amorphous carbon as transparent conductors. Chem. Commun. 46, 3502 (2010)Google Scholar
  99. 99.
    Yin, L., Zhang, K., Luo, H., Cheng, G., Ma, X., Xiong, Z., Xiao, X.: Highly efficient graphene-based Cu(In, Ga)Se2 solar cells with large active area. Nanoscale 6, 10879 (2014)Google Scholar
  100. 100.
    Lu, Z., Guo, C.X., Bin Yang, H., Qiao, Y., Guo, J., Li, C.M.: One-step aqueous synthesis of graphene-CdTe quantum dot-composed nanosheet and its enhanced photoresponses. J. Colloid Interface Sci. 353, 588 (2011)Google Scholar
  101. 101.
    Zhu, G., Xu, T., Lv, T., Pan, L., Zhao, Q., Sun, Z.: Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells. J. Electroanal. Chem. 650, 248 (2011)Google Scholar
  102. 102.
    Dai, L.: Layered graphene/quantum dots : nanoassemblies for highly efficient solar cells. ChemSusChem 3, 797 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raju Nandi
    • 1
  • Soumyadeep Sinha
    • 2
  • Jaeyeong Heo
    • 2
  • Soo-Hyun Kim
    • 3
  • Dip K. Nandi
    • 3
    Email author
  1. 1.School of Advanced Materials EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Materials Science and Engineering, Optoelectronics Convergence Research CenterChonnam National UniversityGwangjuRepublic of Korea
  3. 3.School of Materials Science and EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations