Graphene and Its Derivatives for Secondary Battery Application

  • Anukul K. ThakurEmail author
  • Mandira Majumder
  • Shashi B. Singh
Part of the Carbon Nanostructures book series (CARBON)


Graphene has prophesied itself as a potentially promising greenhorn with unique electronic properties. Attention toward graphene-based material is mainly attributed to its outstanding electrical, mechanical, thermal properties besides very large specific surface area and the tenability that can be achieved for various properties through functionalization and/or moderation. Due to the various unique properties possessed by the graphene sheets including the ease of synthesis and provision for surface functionalization, graphene and materials derived from graphene have been exhibiting great potential in the field of energy storage. This chapter accounts for a brief introduction to the graphene material followed by a brief discussion on the recent advances in the field of its derivatives. This chapter also accounts for the application of graphene and graphene-derived materials in the field of energy storage specifically batteries in various forms like lithium-ion, sodium-ion, lithium-air, and lithium-sulfur batteries.


Secondary batteries Li-ion Sodium-ion Sulphur batteries 


  1. 1.
    Goodwin, S., Darren, A.W.: Closed bipolar electrodes for spatial separation of H2 and O2 evolution during water electrolysis and the development of high-voltage fuel cells. ACS Appl. Mater. Interfaces 9, 23654 (2017)Google Scholar
  2. 2.
    Schafzahl, L., Mahne, N., Schafzahl, B., et al.: Singlet oxygen during cycling of the aprotic sodium–O2 battery. Angew. Chem. Int. Ed. 56, 15728 (2017)Google Scholar
  3. 3.
    Hassoun, J., Panero, S., Reale, P., et al.: A new, safe, high‐rate and high‐energy polymer lithium‐ion battery. Adv. Mater. 21, 4807 (2009)Google Scholar
  4. 4.
    Fakharuddin, A., Jose, R., Brown, T.M., et al.: A perspective on the production of dye-sensitized solar modules. Energ. Environ. Sci. 7, 3952 (2014)Google Scholar
  5. 5.
    Yang, Z., Zhang, J., Kintner-Meyer, C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011)Google Scholar
  6. 6.
    Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer Science & Business Media (2013)Google Scholar
  7. 7.
    Reddy, M.V., Rao, G.V.S., Chowdari, B.V.R.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364 (2013)Google Scholar
  8. 8.
    Wang, G., Zhang, L., Zhang, J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012)Google Scholar
  9. 9.
    Wang, Y., Chen, K.S., Mishler, J., et al.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981 (2011)Google Scholar
  10. 10.
    Yang, Y., Bremner, S., Menictas, C., et al.: Battery energy storage system size determination in renewable energy systems: a review. Renew. Sust. Energ. Rev. 91, 109 (2018)Google Scholar
  11. 11.
    Harks, P.P.R.M.L., Mulder, F.M., Notten, P.H.L.: In situ methods for Li-ion battery research: a review of recent developments. J. Power Sources 288, 92 (2015)Google Scholar
  12. 12.
    Wakihara, M., Yamamoto, O. (eds): Li-Ion Batteries. Wiley-VCH, New York (1998)Google Scholar
  13. 13.
    Nykvist, B., Nilsson, M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329 (2015)Google Scholar
  14. 14.
    Peng, L., Zhu, Y., Chen, D.: Two‐dimensional materials for beyond‐lithium‐ion batteries. Adv. Energ. Mater. 6, 1600025 (2016)Google Scholar
  15. 15.
    Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)Google Scholar
  16. 16.
    Kiehne, H.A.: Battery Technology Handbook, vol. 118. CRC Press (2003)Google Scholar
  17. 17.
    Mekonnen, Y., Sundararajan, A., Arif, I.S.: A review of cathode and anode materials for lithium-ion batteries. In: Southeast Conference IEEE, pp 1–6 (2016)Google Scholar
  18. 18.
    Lecerf, A., Lubin, F., Broussely, M.: Rechargeable electrochemical battery including a lithium anode. U.S. Patent 4,975,346, issued 4 Dec 1990Google Scholar
  19. 19.
    Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271 (2015)Google Scholar
  20. 20.
    Zhu, J., Yang, D., Yin, Z., et al.: Graphene and graphene‐based materials for energy storage applications. Small 10, 3480 (2014)Google Scholar
  21. 21.
    Wang, C., Li, D., Too, O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21, 2604 (2009)Google Scholar
  22. 22.
    Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., et al.: Synthesis of graphene. Int. Nano Lett. 6, 65 (2016)Google Scholar
  23. 23.
    Geim, A.K., Novoselov, S.: The rise of graphene. A collection of reviews. Nat. J. 11 (2010)Google Scholar
  24. 24.
    Geim, A.K.: Graphene: status and prospects. Science 324, 1530 (2009)Google Scholar
  25. 25.
    Tang, Q., Zhou, Z., Chen, Z.: Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5, 4541 (2013)Google Scholar
  26. 26.
    Inagaki, M., Kang, F.: Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193 (2014)Google Scholar
  27. 27.
    Lonkar, S.P., Yogesh, S.D., Ahmed, A.A.: Recent advances in chemical modifications of graphene. Nano Res. 8, 1039 (2015)Google Scholar
  28. 28.
    Allen, M.J., Tung, C., Kaner, B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132 (2009)Google Scholar
  29. 29.
    Jia, X., Campos, D.J., Terrones, M., et al.: Graphene edges: a review of their fabrication and characterization. Nanoscale 3, 86 (2011)Google Scholar
  30. 30.
    Rao, C., Sood, A., Subrahmanyam, K., et al.: Graphene: the new two‐dimensional nanomaterial. Angew. Int. Ed. 48, 7752 (2009)Google Scholar
  31. 31.
    Ruoff, R.: Graphene: Calling all chemists. Nat. Nanotech. 3, 10 (2008)Google Scholar
  32. 32.
    Stankovich, S., Dikin, A., Dommett, H.B., et al.: Graphene-based composite materials. Nature 442, 282 (2006)Google Scholar
  33. 33.
    Sluiter, M.H.F., Kawazoe, Y., et al.: Cluster expansion method for adsorption: application to hydrogen chemisorption on graphene. Phys. Rev. B 68, 085410 (2003)Google Scholar
  34. 34.
    Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)Google Scholar
  35. 35.
    Zeng, Q., Wang, H., Fu, W.: Band engineering for novel two‐dimensional atomic layers. Small 11, 1868 (2015)Google Scholar
  36. 36.
    Sovoselov, N.K., Fal, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192 (2012)Google Scholar
  37. 37.
    Gao, W.: The chemistry of graphene oxide. In: Gao W. (eds) Graphene Oxide. Springer, Cham pp. 61–95 (2015)Google Scholar
  38. 38.
    Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700 (2015)Google Scholar
  39. 39.
    Moldt, T., Eckmann, A., Klar, P., et al.: High-yield production and transfer of graphene flakes obtained by anodic bonding. ACS Nano 5, 7700 (2011)Google Scholar
  40. 40.
    Balan, A., Kumar, R., Boukhicha, M., et al.: Anodic bonded graphene. J. Phys. D: Appl. Phys. 43, 374013 (2010)Google Scholar
  41. 41.
    Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010)Google Scholar
  42. 42.
    Dumonteil, S., Demortier, A., Detriche, S., et al.: Dispersion of carbon nanotubes using organic solvents. J. Nanosci. Nanotechnol. 6, 1315 (2006)Google Scholar
  43. 43.
    Hasan, T., Scardaci, V., Tan, P.H.: Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone [NMP] by polyvinylpyrrolidone [PVP]. J. Phys. Chem. C 111, 12594 (2007)Google Scholar
  44. 44.
    Jun, Z.: Graphene production: new solutions to a new problem. Nat. Nanotechnol. 3, 528 (2008)Google Scholar
  45. 45.
    Reina, A., Jia, X., Ho, J., et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2008)Google Scholar
  46. 46.
    Zhang, Y.I., Zhang, L., Zhou, C.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329 (2013)Google Scholar
  47. 47.
    Bhaviripudi, S., Jia, X., Dresselhaus, S., et al.: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128 (2010)Google Scholar
  48. 48.
    Yu, H.K., Balasubramanian, K., Kim, K., et al.: Chemical vapor deposition of graphene on a “peeled-off” epitaxial cu [111] foil: a simple approach to improved properties. ACS Nano 8, 8636 (2014)Google Scholar
  49. 49.
    Green, M.L., Gross, M.E., Papa, L.E., et al.: Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc. 132, 2677 (1985)Google Scholar
  50. 50.
    Yue, D.W., Ra, C.H., Liu, X.C.: Edge contacts of graphene formed by using a controlled plasma treatment Nanoscale 7, 825 (2015)Google Scholar
  51. 51.
    Shah, J., Lopez-Mercado, J., Carreon, M.G., et al.: Plasma synthesis of graphene from mango peel. ACS Omega 3, 455 (2018)Google Scholar
  52. 52.
    Ho, G.W., Wee, A.T.S., Lin, J.: Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition. Thin Solid Films 388, 73 (2001)Google Scholar
  53. 53.
    Deng, J., Zheng, R., Yang, Y., et al.: Excellent field emission characteristics from few-layer graphene–carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition. Carbon 50, 4732 (2012)Google Scholar
  54. 54.
    Peng, C., Chen, B., Qin, Y., et al.: Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6, 1074 (2012)Google Scholar
  55. 55.
    Wang, G., Yang, J., Park, J., et al.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192 (2008)Google Scholar
  56. 56.
    Zhao, X., Liu, Y., Inoue, S., et al.: Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92, 125502 (2004)Google Scholar
  57. 57.
    Shinde, D.B., Majumder, M., Pillai, K.V.: Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci. Rep. 4, 4363 (2014)Google Scholar
  58. 58.
    Aitchison, T.J., Ginic-Markovic, M., Matisons, J.G., et al.: Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. J. Phys. Chem. C 111, 2440 (2007)Google Scholar
  59. 59.
    Zhu, Y., Stoller, M.D., Cai, W., et al.: Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4, 1227 (2010)Google Scholar
  60. 60.
    McAllister, M.J., Li, J.L., Adamson, D.H., et al.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396 (2007)Google Scholar
  61. 61.
    Cai, M., Thorpe, D., Adamson, D.H., et al.: Methods of graphite exfoliation. J. Mater. Chem. 22, 24992 (2012)Google Scholar
  62. 62.
    Jiang, H., Liu, B., Huang, Y., et al.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265 (2004)Google Scholar
  63. 63.
    Li, X., Wang, X., Zhang, L., et al.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229 (2008)Google Scholar
  64. 64.
    Park, S., Ruoff, S.R.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217 (2009)Google Scholar
  65. 65.
    Hernandez, Y., Nicolosi, V., Lotya, M., et al.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008)Google Scholar
  66. 66.
    Akhavan, O.: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 48, 509 (2010)Google Scholar
  67. 67.
    Valles, C., Drummond, C., Saadaoui, H., et al.: Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802 (2008)Google Scholar
  68. 68.
    Mahmood, N., Zhang, C., Yin, H., et al.: Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2, 15 (2014)Google Scholar
  69. 69.
    El-Kady, M.F., Shao, Y., Kaner, R.B.: Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016)Google Scholar
  70. 70.
    Singh, R.K., Kumar, R., Singh, D.P.: Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6, 64993 (2016)Google Scholar
  71. 71.
    Kinoshita, H., Nishina, Y., Alias, A.A., et al.: Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720 (2014)Google Scholar
  72. 72.
    Yamamoto, S., Kinoshita, H., Hashimoto, H., et al.: Facile preparation of Pd nanoparticles supported on single-layer graphene oxide and application for the Suzuki-Miyaura cross-coupling reaction. Nanoscale 6, 6501 (2014)Google Scholar
  73. 73.
    Stankovich, S., Dikin, D.A., Piner, R.D., et al.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007)Google Scholar
  74. 74.
    Marcano, D.C., Kosynkin, D.V., Berlin, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010)Google Scholar
  75. 75.
    Hummers, J., William, S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)Google Scholar
  76. 76.
    Botas, C., Álvarez, P., Blanco, P., et al.: Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156 (2013)Google Scholar
  77. 77.
    Yan, J., Chou, M.Y.: Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B 82, 125403 (2010)Google Scholar
  78. 78.
    Zhang, L., Xia, J., Zhao, Q., et al.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537 (2010)Google Scholar
  79. 79.
    Wilson, N.R., Pandey, P.A., Beanland, R., et al.: Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547 (2009)Google Scholar
  80. 80.
    Hansora, D.P., Mishra, S.: Graphene Nanomaterials: Fabrication, Properties, and Applications. Pan Stanford (2017)Google Scholar
  81. 81.
    Songfeng, P., Cheng, H.M.: The reduction of graphene oxide. Carbon 50, 3210 (2012)Google Scholar
  82. 82.
    Yuan, J., Ma, L.P., Pei, S., et al.: Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes. ACS Nano 7, 4233 (2013)Google Scholar
  83. 83.
    Ishii, Y., Sakaguchi, S., Iwahama, T.: Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal. 343, 393 (2001)Google Scholar
  84. 84.
    Cheng, Y.C., Kaloni, T.P., Zhu, Z.Y.: Oxidation of graphene in ozone under ultraviolet light. Appl. Phys. Lett. 10, 073110 (2012)Google Scholar
  85. 85.
    Zhou, M., Wang, Y., Zhai, Y., et al.: Controlled synthesis of large‐area and patterned electrochemically reduced graphene oxide films. Chem.: Eur. J. 15, 6116 (2009)Google Scholar
  86. 86.
    Zhou, C., Chen, S., Lou, J., et al.: Graphene’s cousin: the present and future of graphane. Nanoscale Res. Lett. 9, 26 (2014)Google Scholar
  87. 87.
    Sahin, H., Leenaerts, O., Singh, S.K., et al.: Graphane. Wiley Interdiscip. Rev. Comput. Mol. Sci 5, 255 (2015)Google Scholar
  88. 88.
    Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 613 (2009)Google Scholar
  89. 89.
    Umadevi, D., Sastry, G.N.: Graphane versus graphene: a computational investigation of the interaction of nucleobases, aminoacids, heterocycles, small molecules [CO2, H2O, NH3, CH4, H2], metal ions and onium ions. Phys. Chem. Chem. Phys. 17, 30260 (2015)Google Scholar
  90. 90.
    Reshak, A.H., Auluck, S.: Electronic and optical properties of chair-like and boat-like graphane. RSC Adv. 4, 37411 (2014)Google Scholar
  91. 91.
    Wen, X.D., Yang, T., Hoffmann, R., et al.: Graphane nanotubes. ACS Nano 6, 7142 (2012)Google Scholar
  92. 92.
    Feng, W., Long, P., Feng, Y., et al.: Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1500413 (2016)Google Scholar
  93. 93.
    Samarakoon, D.K., Chen, Z., Nicolas, C., et al.: Structural and electronic properties of fluorographene. Small 7, 965 (2011)Google Scholar
  94. 94.
    Paupitz, R., Autreto, P.A.S., Legoas, S.B., et al.: Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnology 24, 035706 (2012)Google Scholar
  95. 95.
    Chronopoulos, D.D., Bakandritsos, A., Pykal, M., et al.: Chemistry, properties, and applications of fluorographene. Appl. Mater. Today 9, 60 (2017)Google Scholar
  96. 96.
    Grayfer, E.D., Makotchenko, V.G., Kibis, L.S., et al.: Synthesis, Properties, and Dispersion of Few‐Layer Graphene Fluoride. Chem. Asian J. 8, 2015 (2013)Google Scholar
  97. 97.
    Nair, R.R., Ren, W., Jalil, R., et al.: Fluorographene: a two‐dimensional counterpart of Teflon. Small 6, 2877 (2010)Google Scholar
  98. 98.
    Yuan, S., Rösner, M., Schulz, A., et al.: Electronic structures and optical properties of partially and fully fluorinated graphene. Phys. Rev. Lett. 114, 047403 (2015)Google Scholar
  99. 99.
    Sturala, J., Luxa, J., Pumera, M., et al.: Chemistry of graphene derivatives: synthesis, applications, and perspectives. Chem. Eur. J. 24, 5992 (2018)Google Scholar
  100. 100.
    Baughman, R.H., Eckhardt, H., Kertesz, M.: Structure‐property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687 (1987)Google Scholar
  101. 101.
    Enyashin, A.N., Ivanovskii, A.L.: Graphene allotropes. Phys. Status Solidi (b) 248, 1879 (2011)Google Scholar
  102. 102.
    Xu, Z., Lv, X., Li, J., et al.: A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. RSC Adv. 6, 25594 (2016)Google Scholar
  103. 103.
    Srinivasu, K., Ghosh, S.K.: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 116, 5951 (2012)Google Scholar
  104. 104.
    Kim, B.G., Choi, H.J.: Graphyne: hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 86, 115435 (2012)Google Scholar
  105. 105.
    Coluci, V.R., Galvao, D.S., Baughman, R.H.: Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 121, 3228 (2004)Google Scholar
  106. 106.
    Coluci, V.R., Braga, S.F., Legoas, S.B., et al.: New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15: S142 (2004)Google Scholar
  107. 107.
    Sun, L., Jiang, P.H., Liu, H.J. Graphdiyne: a two-dimensional thermoelectric material with high figure of merit. Carbon 90, 255 (2015)Google Scholar
  108. 108.
    Long, M., Tang, L., Wang, D., et al.: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5, 2593 (2011)Google Scholar
  109. 109.
    Zhong, J., Wang, J., Zhou, J.G., et al.: Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. J. Phys. Chem. C 117, 5931 (2013)Google Scholar
  110. 110.
    Pan, L.D., Zhang, L.Z., Song, B.Q., et al.: Graphyne-and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl. Phys. Lett. 98, 173102 (2011)Google Scholar
  111. 111.
    Li, Y., Zhou, Z., Shen, P., et al.: Structural and electronic properties of graphane nanoribbons. J. Phys. Chem. C 113, 15043 (2009)Google Scholar
  112. 112.
    Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., et al.: Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351 (2010)Google Scholar
  113. 113.
    Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66 (2013)Google Scholar
  114. 114.
    Yoo, E.J., Kim, J., Hosono, E.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277 (2008)Google Scholar
  115. 115.
    Marom, R., Francis, A.S., Leifer, N., et al.: A review of advanced and practical lithium battery materials. J. Mater. Chem. 21, 9938 (2011)Google Scholar
  116. 116.
    Subrahmanyam, G., Miele, E., Angelis, F.D., et al.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014)Google Scholar
  117. 117.
    Dengyu, P., Song, W., Bing, Z., et al.: Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136 (2009)Google Scholar
  118. 118.
    Ali, A.T., Ullah, H., Sudhagar, P., et al.: The application of graphene and its derivatives to energy conversion, storage, and environmental and biosensing devices. Chem. Rec. 16, 1591 (2016)Google Scholar
  119. 119.
    Xu, C., Xu, B., Gu, Y., et al.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6, 1388 (2013)Google Scholar
  120. 120.
    Zhu, X., Zhu, Y., Murali, S., et al.: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011)Google Scholar
  121. 121.
    Shuvo, M.A.I., Khan, M.A.R., Karim, H., et al.: Investigation of modified graphene for energy storage applications. ACS Appl. Mater. Int. 5, 7881 (2013)Google Scholar
  122. 122.
    Georgakilas, H., Otyepka, M., Bourlinos, A.B., et al.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156 (2012)Google Scholar
  123. 123.
    Chen, W., Zhu, Z., Li, S., et al.: Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Nanoscale 4, 2124 (2012)Google Scholar
  124. 124.
    Zhu, S., Li, T.: Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release. ACS Nano 8, 2864 (2014)Google Scholar
  125. 125.
    Sun, C., Feng, Y., Li, Y., et al.: Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6, 2634 (2014)Google Scholar
  126. 126.
    Amini, M.N., Leenaerts, O., Partoens, B., et al.: Graphane-and fluorographene-based quantum dots. J. Phys. Chem. C 117, 16242 (2013)Google Scholar
  127. 127.
    Zhang, H., Zhao, M., He, X., et al.: High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. J. Phys. Chem. C 115, 8845 (2011)Google Scholar
  128. 128.
    Becton, M., Zhang, L., Wang, X., et al.: Mechanics of graphyne crumpling. Phys. Chem. Chem. Phys. 16, 18233 (2014)Google Scholar
  129. 129.
    Uthaisar, C., Barone, V., Peralta, J.E.: Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106, 113715 (2009)Google Scholar
  130. 130.
    Li, L., Raji, A.R.O., Tour, J.M.: Graphene‐wrapped MnO2–graphene nanoribbons as anode materials for high‐performance lithium ion batteries. Adv. Mater. 25, 6298 (2013)Google Scholar
  131. 131.
    Xiao, B., Li, X., Li, X., et al.: Graphene nanoribbons derived from the unzipping of carbon nanotubes: controlled synthesis and superior lithium storage performance. J. Phys. Chem. C 118, 881 (2013)Google Scholar
  132. 132.
    Lin, J., Peng, Z., Xiang, C., et al.: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013)Google Scholar
  133. 133.
    Pan, H., Hu, Y.S., Chen, L.: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338 (2013)Google Scholar
  134. 134.
    Slater, M.D., Kim, D., Lee, E., et al.: Sodium‐ion batteries. Adv. Funct. Mater. 23, 947 (2013)Google Scholar
  135. 135.
    Hwang, J.Y., Myung, S.T., Sun, Y. K.: Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529 (2017)Google Scholar
  136. 136.
    Kundu, D., Talaie, E., Duffort, V., et al.: The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431 (2015)Google Scholar
  137. 137.
    Balogun, M.S., Luo, Y., Qiu, W., et al.: A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98, 162 (2016)Google Scholar
  138. 138.
    He, J., Wang, N., Cui, Z., et al.: Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017)Google Scholar
  139. 139.
    Zhang, S., Liu, H., Huang, C., et al.: Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 51, 1834 (2015)Google Scholar
  140. 140.
    An, H., Li, Y., Gao, Y., et al.: Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. Carbon 116, 338 (2017)Google Scholar
  141. 141.
    Liu, Y., Yang, Y., Wang, X., et al.: Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Int. 9, 15484 (2017)Google Scholar
  142. 142.
    Shao, Y., Park, S., Xiao, J.: Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal. 2, 844 (2012)Google Scholar
  143. 143.
    Girishkumar, G., McCloskey, B., Luntz, A.C., et al.: Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193 (2010)Google Scholar
  144. 144.
    Park, M., Sun, H., Lee, H., et al.: Lithium‐air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2, 780 (2012)Google Scholar
  145. 145.
    Luntz, A.C., McCloskey, B.D.: Nonaqueous Li–air batteries: a status report. Nonaqueous. Chem. Rev. 114, 11721 (2014)Google Scholar
  146. 146.
    Ma, Z., Yuan, X., Li, L., et al.: A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ. Sci. 8, 2144 (2015)Google Scholar
  147. 147.
    Ottakam, T., Muhammed, M., Stefan, A., et al.: The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494 (2012)Google Scholar
  148. 148.
    Li, Y., Jiajun, W., Xifei, L., et al.: Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem. Commun. 47, 9438 (2011)Google Scholar
  149. 149.
    Wang, L., Ara, M., Wadumesthrige, K., Salley, S., Ng, K.Y.S.: Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. J. Power Sources 234, 8 (2013)Google Scholar
  150. 150.
    Kun, W., Wang, N., He, J., et al.: Graphdiyne nanowalls as anode for lithium−ion batteries and capacitors exhibit superior cyclic stability. Electrochim. Acta 253, 506 (2015)Google Scholar
  151. 151.
    Zhang, Y., Gao, Z., Song, N., et al. Graphene and its derivatives in lithium–sulfur batteries. Mater. Today. Energy 9, 319 (2018)Google Scholar
  152. 152.
    Li, L., Ruan, G., Peng, Z., et al.: Enhanced cycling stability of lithium sulfur batteries using sulfur–polyaniline–graphene nanoribbon composite cathodes. ACS Appl. Mater. Interfaces. 6, 15033 (2014)Google Scholar
  153. 153.
    Zu, C., Manthiram, A.: Hydroxylated graphene–sulfur nanocomposites for high‐rate lithium–sulfur batteries. Adv. Energy Mater. 3, 1008 (2013)Google Scholar
  154. 154.
    Zhao, M.Q., Zhang, Q., Huang, J.Q., et al.: Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Commun. 5, 3410 (2014)Google Scholar
  155. 155.
    Lu, S., Chen, Y., Wu, X., et al.: Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep. 4, 4629 (2014)Google Scholar
  156. 156.
    Liu, Z., Li, J., Xiang, J., et al.: Hierarchical nitrogen-doped porous graphene/reduced fluorographene/sulfur hybrids for high-performance lithium–sulfur batteries. Phys. Chem. Chem. Phys. 19, 2567 (2017)Google Scholar
  157. 157.
    Yu, M., Li, R., Wu, M., et al.: Graphene materials for lithium–sulfur batteries. Energy Storage Mater. 1, 51 (2015)Google Scholar
  158. 158.
    Wu, S., Ge, R., Lu, M., et al.: Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery. Nano Energy 15, 379 (2015)Google Scholar
  159. 159.
    Yin, W.W., Fu, Z.W.: The potential of Na-air batteries. Chem. Cat. Chem. 9, 1545 (2017)Google Scholar
  160. 160.
    Wang, J., Yang, J., Nuli, Y., et al.: Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9, 31 (2007)Google Scholar
  161. 161.
    Phil, K.: Batteries included. Electrical Connection Autumn 52 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anukul K. Thakur
    • 1
    Email author
  • Mandira Majumder
    • 2
  • Shashi B. Singh
    • 1
  1. 1.Department of PhysicsIndian Institute of Science Education and Research BerhampurBerhampurIndia
  2. 2.Nanostructured Composite Materials Laboratory, Department of PhysicsIndian Institute of Technology (Indian School of Mines) DhanbadDhanbadIndia

Personalised recommendations