Advertisement

The Higher-Order Prover Leo-III (Extended Abstract)

  • Alexander SteenEmail author
  • Christoph Benzmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11793)

Abstract

Leo-III is an automated theorem prover for extensional type theory with Henkin semantics. It also automates various non-classical logics, e.g., almost every normal higher-order modal logic is supported. In this extended abstract, the features of Leo-III are surveyed.

This is an abstract of the homonymous paper accepted at the 9th International Joint Conference on Automated Reasoning (IJCAR 2018), see doi: 10.1007/978-3-319-94205-6_8.

References

  1. 1.
    Andrews, P.B., Brown, C.E.: TPS: a hybrid automatic-interactive system for developing proofs. J. Appl. Log. 4(4), 367–395 (2006).  https://doi.org/10.1016/j.jal.2005.10.002MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benzmüller, C., Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2019). https://plato.stanford.edu/entries/type-theory-church/Google Scholar
  3. 3.
    Benzmüller, C., Kohlhase, M.: System description: LEO – a higher-order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 139–143. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054256CrossRefGoogle Scholar
  4. 4.
    Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier, Amsterdam (2014).  https://doi.org/10.1016/B978-0-444-51624-4.50005-8CrossRefzbMATHGoogle Scholar
  5. 5.
    Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., et al. (eds.) ECAI 2012. Frontiers in AI and Applications, vol. 242, pp. 163–168. IOS Press, Montpellier (2012).  https://doi.org/10.3233/978-1-61499-098-7-163CrossRefGoogle Scholar
  6. 6.
    Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010).  https://doi.org/10.1093/jigpal/jzp080MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015).  https://doi.org/10.1007/s10817-015-9348-yMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science an EATCS Series. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-662-07964-5CrossRefzbMATHGoogle Scholar
  9. 9.
    Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  10. 10.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_29CrossRefGoogle Scholar
  11. 11.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14052-5_11CrossRefGoogle Scholar
  12. 12.
    Brown, C., Gauthier, T., Kaliszyk, C., Sutcliffe, G., Urban, J.: GRUNGE: a grand unified ATP challenge. In: Fontaine, P. (ed.) Proceedings of the 27th International Conference on Automated Reasoning (2019, to appear). Preprint: arXiv:1903.02539 [cs.LO]
  13. 13.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_11CrossRefGoogle Scholar
  14. 14.
    Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing, Maun, Botswana, 7–12 May 2017, vol. 46, pp. 14–30. EasyChair (2017).  https://doi.org/10.29007/jsb9
  15. 15.
    Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722086_7CrossRefzbMATHGoogle Scholar
  16. 16.
    Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 1635, pp. 41–55 (2016). CEUR-WS.org
  17. 17.
    Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_5CrossRefGoogle Scholar
  18. 18.
    Steen, A.: Extensional paramodulation for higher-order logic and its effective implementation Leo-III, DISKI, vol. 345. Akademische Verlagsgesellschaft AKA GmbH, Berlin, September 2018. Dissertation, Freie Universität Berlin, GermanyGoogle Scholar
  19. 19.
    Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–116. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94205-6_8CrossRefGoogle Scholar
  20. 20.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010).  https://doi.org/10.6092/issn.1972-5787/1710MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33353-8_41CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FSTCUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.Department of Maths and Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations