The Higher-Order Prover Leo-III (Extended Abstract)

  • Alexander SteenEmail author
  • Christoph Benzmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11793)


Leo-III is an automated theorem prover for extensional type theory with Henkin semantics. It also automates various non-classical logics, e.g., almost every normal higher-order modal logic is supported. In this extended abstract, the features of Leo-III are surveyed.

This is an abstract of the homonymous paper accepted at the 9th International Joint Conference on Automated Reasoning (IJCAR 2018), see doi: 10.1007/978-3-319-94205-6_8.


  1. 1.
    Andrews, P.B., Brown, C.E.: TPS: a hybrid automatic-interactive system for developing proofs. J. Appl. Log. 4(4), 367–395 (2006). Scholar
  2. 2.
    Benzmüller, C., Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2019). Scholar
  3. 3.
    Benzmüller, C., Kohlhase, M.: System description: LEO – a higher-order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 139–143. Springer, Heidelberg (1998). Scholar
  4. 4.
    Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier, Amsterdam (2014). Scholar
  5. 5.
    Benzmüller, C., Otten, J., Raths, T.: Implementing and evaluating provers for first-order modal logics. In: Raedt, L.D., et al. (eds.) ECAI 2012. Frontiers in AI and Applications, vol. 242, pp. 163–168. IOS Press, Montpellier (2012). Scholar
  6. 6.
    Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. Log. J. IGPL 18(6), 881–892 (2010). Scholar
  7. 7.
    Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015). Scholar
  8. 8.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science an EATCS Series. Springer, Heidelberg (2004). Scholar
  9. 9.
    Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  10. 10.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013). Scholar
  11. 11.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). Scholar
  12. 12.
    Brown, C., Gauthier, T., Kaliszyk, C., Sutcliffe, G., Urban, J.: GRUNGE: a grand unified ATP challenge. In: Fontaine, P. (ed.) Proceedings of the 27th International Conference on Automated Reasoning (2019, to appear). Preprint: arXiv:1903.02539 [cs.LO]
  13. 13.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). Scholar
  14. 14.
    Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing, Maun, Botswana, 7–12 May 2017, vol. 46, pp. 14–30. EasyChair (2017).
  15. 15.
    Hustadt, U., Schmidt, R.A.: MSPASS: modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 67–71. Springer, Heidelberg (2000). Scholar
  16. 16.
    Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 1635, pp. 41–55 (2016).
  17. 17.
    Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014). Scholar
  18. 18.
    Steen, A.: Extensional paramodulation for higher-order logic and its effective implementation Leo-III, DISKI, vol. 345. Akademische Verlagsgesellschaft AKA GmbH, Berlin, September 2018. Dissertation, Freie Universität Berlin, GermanyGoogle Scholar
  19. 19.
    Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–116. Springer, Cham (2018). Scholar
  20. 20.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010). Scholar
  22. 22.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 492–495. Springer, Heidelberg (2012). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FSTCUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.Department of Maths and Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations