Advertisement

Tm Based Solid-State Lasers—Toward High Power Tunability—A Review

  • Salman NoachEmail author
  • Uzziel Sheintop
  • Rotem Nahear
Chapter
  • 15 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

Tm based lasers have gained a lot of interest during recent years for many application. Different works have been done applying the Tm Characteristics with different hosts in order to improve the laser performance in many features (power, tunability range, spectral bandwidth, energy per pulse, etc.) by many techniques. In this review we will focused on achieving tunability in Tm solid-state lasers, and we will give an overview of the works have been done in this field.

Keywords

Solid-state laser Mid IR laser Tunable laser 

References

  1. 1.
    I. Sorokina, K. Vodopyanov, Solid-State Mid-infrared Laser Sources (Springer, Berlin, 2003), pp. 255–351CrossRefGoogle Scholar
  2. 2.
    A. Godard, Infrared (2–12 μm) solid-state laser sources: a review. Comptes Rendus Phys. 8(10), 1100–1128 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K. Scholle, P. Fuhrberg, P. Koopmann, S. Lamrini, 2 µm Laser Sources and Their Possible Applications (INTECH Open Access Publisher, 2010), pp. 471–500Google Scholar
  4. 4.
    W. Koechner, Solid-State Laser Engineering (Springer, New York, NY, 2006)zbMATHGoogle Scholar
  5. 5.
    O. Svelto, Principles of Lasers (Springer, New York, 2016)Google Scholar
  6. 6.
    S. So, J. Mackenzie, D. Shepherd, W. Clarkson, J. Betterton, E. Gorton, A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers. Appl. Phys. B 84(3), 389–393 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    F. Cornacchia, A. Toncelli, M. Tonelli, 2-μm lasers with fluoride crystals: research and development. Prog. Quantum Electron. 33(2–4), 61–109 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    E.F. Kustov, V.P. Petrov, D.S. Petrova, J.P. Udalov, Absorption and luminescence spectra of Nd3+ and Er3+ ions in monocrystals of CaYAlO4. Phys. Status Solidi a 41, 379–383 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, M. Timoshechkin, Efficient laser-diode-pumped neodymium-doped calcium–niobium–gallium–garnet laser. Appl. Opt. 32(36), 7387 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    F.J. Duarte, Tunable Lasers Handbook (Academic Press, San Diego, 1995), pp. 289, 291Google Scholar
  11. 11.
    Z.P. Qin, J.G. Liu, G.Q. Xie, J. Ma, W.L. Gao, L.J. Qian, P. Yuan, X.D. Xu, J. Xu, D.H. Zhou, Spectroscopic characteristics and laser performance of Tm:CaYAlO4 crystal. Laser Phys. 23, 105806 (4 pp.) (2013)Google Scholar
  12. 12.
    R. Moncorgé, N. Garnier, P. Kerbrat, C. Wyon, C. Borel, Spectroscopic investigation and two-micron laser performance of Tm3+:CaYAlO4 single crystals. Opt. Commun. 141(1–2), 29–34 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    W. Gao, G. Xie, J. Ma, M. Liu, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, J. Zhang, Spectroscopic characteristics and efficient laser operation of Tm:CLNGG disordered crystal. Laser Phys. Lett. 10(5), 055809 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    D. Lancaster, S. Gross, M. Withford, T. Monro, Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers. Opt. Express 22(21), 25286 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    O. Efimov, L. Glebov, L. Glebova, K. Richardson, V. Smirnov, High-efficiency Bragg gratings in photothermorefractive glass. Appl. Opt. 38(4), 619–627 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    L.B. Glebov, High brightness laser design based on volume Bragg gratings. Proc. SPIE 6216, 621601 (2006)CrossRefGoogle Scholar
  17. 17.
    T. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, M. Bass, Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. Opt. Lett. 31(2), 229 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sun, J. Long, X. Li, Y. Liu, H. Ma, Y. An, X. Hu, Y. Wang, C. Li, D. Shen, Widely tunable Tm:LuYAG laser with a volume Bragg grating. Laser Phys. Lett. 9(8), 553–556 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Zhao, F. Wu, X. Xu, D. Shen, High-power, widely tunable Tm:CaGdAlO4 laser resonantly pumped by a Raman fiber laser at ∼1.7 μm. Opt. Eng. 57(02), 1 (2017)Google Scholar
  20. 20.
    B. Lyot, Un monochromateur a grand champ utilizant les interferences enlumiére polarisée. Compt. Rend. 197, 1593 (1933)Google Scholar
  21. 21.
    J.W. Evans, The birefringent filter. J. Opt. Soc. Am. 39, 229–242 (1949)ADSCrossRefGoogle Scholar
  22. 22.
    A.L. Bloom, Modes of a laser resonator containing tilted birefringent plates. J. Opt. Soc. Am. 64, 447–452 (1974)ADSCrossRefGoogle Scholar
  23. 23.
    S. Zhu, Birefringent filter with tilted optic axis for tuning dye lasers: theory and design. Appl. Opt. 29(3), 410 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    O. Eremeikin, A. Savikin, K. Pavlenko, V. Sharkov, Diode-pumped tunable Tm:YLF laser for mid-infrared gas spectroscopy. Quantum Electron. 40(6), 471–474 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    L. Yu-Feng, Y. Bao-Quan, L. Yan-Mei, W. Yue-Zhu, J. You-Lun, Widely tunable cw diode-pumped 1.9-μm Tm:GdVO4 laser at room temperature. Chin. Phys. Lett. 24(3), 724–726 (2007)Google Scholar
  26. 26.
    N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, M. Tonelli, Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 182 to 206 μm. Opt. Lett. 32(14), 2040 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    L. Wang, C. Gao, M. Gao, L. Liu, F. Yue, Diode-pumped 2 μm tunable single-frequency Tm:LuAG laser with intracavity etalons. Appl. Opt. 52(6), 1272 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    U. Sheintop, E. Perez, S. Noach, Narrow bandwidth tunable watt level Tm:YAP laser using two etalons, in Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology (2018)Google Scholar
  29. 29.
    A. Korenfeld, D. Sebbag, U. Ben-Ami, E. Shalom, G. Marcus, S. Noach, High pulse energy passive Q-switching of a diode-pumped Tm:YLF laser by Cr:ZnSe. Laser Phys. Lett. 12(4), 045804 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    D. Sebbag, A. Korenfeld, U. Ben-Ami, D. Elooz, E. Shalom, S. Noach, Diode end-pumped passively Q-switched Tm:YAP laser with 185-mJ pulse energy. Opt. Lett. 40(7), 1250 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    B. Cole, L. Goldberg, Highly efficient passively Q-switched Tm:YAP laser using a Cr:ZnS saturable absorber. Opt. Lett. 42(12), 2259 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    H. Hecht, Z. Burshtein, A. Katzir, S. Noach, M. Sokol, E. Frumker, E. Galun, A. Ishaaya, Passive Q-switching of a Tm:YLF laser with a Co2+ doped silver halide saturable absorber. Opt. Mater. 64, 64–69 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    P. Gao, H. Huang, X. Wang, H. Liu, J. Huang, W. Weng, S. Dai, J. Li, W. Lin, Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi2Te3 as a saturable absorber. Appl. Opt. 57(9), 2020 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    J. Jabczynski, Ł. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelínková, J. Šulc, M. Němec, High repetition rate, high peak power, diode pumped Tm:YLF laser. Laser Phys. Lett. 6(2), 109–112 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, J. Xu, Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser. Appl. Opt. 53(27), 6119 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    C. Jin, D. Li, Y. Bai, Z. Ren, J. Bai, Wideband tunable graphene-based passively Q-switched Tm:YAP laser. Laser Phys. 25(4), 045802 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    U. Sheintop, E. Perez, S. Noach, Actively Q switched tunable narrow bandwidth milli-Joule level Tm:YLF laser. Opt. ExpressGoogle Scholar
  38. 38.
    L. Yu-Feng, J. You-Lun, Y. Bao-Quan, W. Yue-Zhu, S. Ubizskii, A laser-diode-pumped widely tunable single-longitude-mode Tm:YAP laser at room temperature. Chin. Phys. Lett. 24(9), 2594–2596 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    T. Feng, S. Zhao, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, J. Hou, Y. Yang, J. He, L. Zheng, Q. Wang, X. Xu, L. Su, J. Xu, Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers. Opt. Express 21(21), 24665 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    F. Di Trapani, X. Mateos, V. Petrov, A. Agnesi, U. Griebner, H. Zhang, J. Wang, H. Yu, Continuous-wave laser performance of Tm:LuVO4 under Ti:sapphire laser pumping. Laser Phys. 24(3), 035806 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    T. Feng, S. Zhao, K. Yang, G. Li, D. Li, J. Zhao, W. Qiao, L. Zheng, J. Xu, Q. Wang, X. Xu, L. Su, Study on characteristics of diode-pumped continuous-wave tunable and passively Q-switched Tm:SSO laser. Appl. Phys. B 117(1), 177–182 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Zhang, C. Gao, M. Gao, Z. Lin, R. Wang, A diode pumped tunable single-frequency Tm:YAG laser using twisted-mode technique. Laser Phys. Lett. 7(1), 17–20 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Physics, Electro-Optics Engineering FacultyJerusalem College of TechnologyJerusalemIsrael

Personalised recommendations