Advertisement

Numerical Simulation of the Plasma Inside a Glow Discharge Millimeter Wave Detector

  • Cemre Kusoglu-SarikayaEmail author
  • Demiral Akbar
  • Hakan Altan
Chapter
  • 15 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 223)

Abstract

Nowadays, Terahertz (THz) and mm-waves are encountered in many branches such as security, industry and medicine. However, limitations in existing commercial detectors in terms of cost, speed and responsivity prevent this highly advantageous region of the electromagnetic spectrum from being used more efficiently. For these reasons, neon indicator lamps, otherwise known as glow discharge detectors (GDDs), have succeeded in attracting the attention of researchers, not only because they are cheap, but also because of their better performance to other technologies. In these detectors, detection occurs as a result of the interaction of THz/mm-wave with the plasma in the lamp. Although this interaction has been tried to be explained qualitatively using various analytical models, there has been no accurate quantitative explanation about this interaction in the literature. The problem is mainly due to the confined plasma environment which can be difficult to resolve with equilibrium models. As known, GDDs are non-local thermal equilibrium plasma lamps, and such plasmas need to be modeled with a kinetic approach. For that reason, in this study, parallel 1d3v Particle in Cell/Monte Carlo Collision (PIC/MCC) simulation of the plasma in the neon lamp is performed. This simulation will form the basis for the planned investigations into understanding the effects of THz/mm-waves on the plasma. The kinetic approach employed in the simulation allows us to accurately understand and predict the plasma parameters causing the glow discharge in GDDs. The results are checked using experiments performed on home-built discharge glow chambers with similar gap dimensions.

Notes

Acknowledgements

The work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) 115F226. This research is also sponsored in part by the NATO Science for Peace and Security Programme under grant MD.SFPP 984775. The simulations were performed using High Performance and Grid Computing Center (TRUBA Resources) at TUBITAK ULAKBIM.

References

  1. 1.
    N.S. Kopeika, Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties. IEEE Trans. Plasma Sci. 6, 139–157 (1978)CrossRefADSGoogle Scholar
  2. 2.
    A. Abramovich, N.S. Kopeika, D. Rozban, E. Farber, Inexpensive detector for terahertz imaging. Appl. Opt. 46, 7207–7211 (2007)CrossRefADSGoogle Scholar
  3. 3.
    A. Abramovich, N.S. Kopeika, D. Rozban, E. Farber, Terahertz detection mechanism of inexpensive sensitive glow discharge detector. J. Appl. Phys. 103, 093306 (2008)CrossRefADSGoogle Scholar
  4. 4.
    L. Hou, W. Shi, Fast terahertz continuous-wave detector based on weakly ionized plasma. IEEE Electron Device Lett. 33, 1583–1585 (2012)CrossRefADSGoogle Scholar
  5. 5.
    C. Burroughs, A. Bronwell, Teleteknik II, 62 (1952)Google Scholar
  6. 6.
    M.A. Lampert, A.D. White, Microwave techniques for studying discharges in gases. Electron. Commun. 30, 124–128 (1953)Google Scholar
  7. 7.
    B.J. Udelson, Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge. J. Appl. Phys. 28, 380–381 (1957)CrossRefADSGoogle Scholar
  8. 8.
    G.D. Lobov, Gas discharge detector of microwave oscillations. Radiotekh. Electron. 5, 152–165 (1960)Google Scholar
  9. 9.
    P.J.W. Severin, The Interaction of Microwaves with the Cathode Fall and Negative Glow in a Glow Discharge (Philips Research Laboratories, Eindhoven, Netherlands, 1965)Google Scholar
  10. 10.
    N.H. Farhat, A plasma microwave power density detector. Proc. IEEE 52, 1053–1054 (1964)CrossRefGoogle Scholar
  11. 11.
    P.J.W. Severin, A.G. Van Nie, A Simple and rugged wide-band gas discharge detector for millimeter waves. IEEE Trans. Microw. Theory Tech. 14, 431–436 (1966)CrossRefADSGoogle Scholar
  12. 12.
    N.S. Kopeika, Theory of a fast, sensitive, submillimeter wave glow discharge detector. Int. J. Infrared Millim. Waves 5, 1333–1348 (1984)CrossRefADSGoogle Scholar
  13. 13.
    N.S. Kopeika, On the mechanism of glow discharge detection of microwave and millimeter-wave radiation. Proc. IEEE 63, 981–982 (1975)CrossRefGoogle Scholar
  14. 14.
    C. Kusoglu-Sarikaya, I. Rafatov, A.A. Kudryavtsev, Particle in cell/Monte Carlo collision analysis of the problem of identification of impurities in the gas by the plasma electron spectroscopy method. Phys. Plasmas 23, 063524 (2016)CrossRefADSGoogle Scholar
  15. 15.
    A. Bogaerts, E. Neyts, R. Gijbels, J.V.D. Mullen, Gas discharge plasmas and their applications. Spectochim. Acta B 57, 609–658 (2002)CrossRefADSGoogle Scholar
  16. 16.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)Google Scholar
  17. 17.
    A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE Press, New York, 1994)CrossRefGoogle Scholar
  18. 18.
    T. Hammer, Applications of plasma technology in environmental techniques. Contrib. Plasma Phys. 39, 441–462 (1999)CrossRefADSGoogle Scholar
  19. 19.
    D.M. Goebel, I. Katz, Fundamental of Electric Propulsion: Ion and Hall Thrusters (Wiley, New Jersey, 2008)CrossRefGoogle Scholar
  20. 20.
    J.R. Coatan, A.M. Marsden, Lamps and Lightning (Arnold, London, 1997)Google Scholar
  21. 21.
    A. Sobel, Plasma displays. IEEE Trans. Plasma Sci. 19, 1032–1047 (1991)CrossRefADSGoogle Scholar
  22. 22.
    N.S. Kopeika, J. Rosenbaum, R. Kastner, Abnormal glow discharge detection of visible radiation. Appl. Opt. 15, 1610–1615 (1976)CrossRefADSGoogle Scholar
  23. 23.
    P.H. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002)CrossRefADSGoogle Scholar
  24. 24.
    D.T. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R. Swain, H.W. Yorke, X. Zhang, Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. Proc. SPIE 4013, 36–46 (2000)CrossRefADSGoogle Scholar
  25. 25.
    L. Hou, H. Park, X. Zhang, Terahertz wave imaging system based on glow discharge detector. IEEE J. Sel. Top. Quant. 17, 177–182 (2011)CrossRefGoogle Scholar
  26. 26.
    T.S. Hartwick, D.T. Hodges, D.H. Barker, F.B. Foote, Far infrared imagery. Appl. Opt. 15, 1919–1922 (1976)CrossRefADSGoogle Scholar
  27. 27.
    M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, Security applications of terahertz technology. Proc. SPIE 5070, 44–52 (2003)CrossRefADSGoogle Scholar
  28. 28.
    W.R. Tribe, D.A. Newnham, P.F. Taday, M.C. Kemp, Hidden object detection: security applications of terahertz technology. Proc. SPIE 5354, 168–176 (2004)CrossRefADSGoogle Scholar
  29. 29.
    P.F. Taday, Applications of terahertz spectroscopy to pharmaceutical sciences. Philos. Trans. R. Soc. London Ser. A 362, 351–364 (2004)CrossRefADSGoogle Scholar
  30. 30.
    C.F. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, T. Rades, Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J. Pharm. Sci. 94, 837–846 (2005)CrossRefGoogle Scholar
  31. 31.
    E. Pickwell, B.E. Cole, A.J. Fitzgerald, M. Pepper, V.P. Wallace, In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol. 49, 1595–1607 (2004)CrossRefGoogle Scholar
  32. 32.
    V.P. Wallace, A.J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, D.D. Arnone, Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br. J. Dermatol. 151, 424–432 (2004)CrossRefGoogle Scholar
  33. 33.
    D.M. Mittleman, R.H. Jacobsen, M.C. Nuss, T-Ray Imaging. IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996)CrossRefADSGoogle Scholar
  34. 34.
    N. Kukutsu, Y. Kado, Overview of millimeter and terahertz wave application research. NTT Tech. Rev. 7, 1–6 (2009)Google Scholar
  35. 35.
    F.A. Benson, G. Mayo, Effects of ambient-temperature variations on glow-discharge tube characteristics. J. Sci. Instrum. 31, 118–120 (1954)CrossRefADSGoogle Scholar
  36. 36.
    Private communication. https://www.intl-lighttech.com/specialty-light-sources/neon-lamps. Cited 13 April 2018
  37. 37.
    W.G. Miller, Using and Understanding Miniature Neon Lamps (Howard W. Sams & Co., Inc, Indianapolis, 1969)Google Scholar
  38. 38.
    L. Hou, W. Shi, S. Chen, Z. Yan, Terahertz continuous wave detection using weakly ionized plasma in inert gases. IEEE Electron Device Lett. 34, 689–691 (2013)CrossRefADSGoogle Scholar
  39. 39.
    Y.P. Raizer, Gas Discharge Physics (Springer, Berlin, Germany, 1991)CrossRefGoogle Scholar
  40. 40.
    E.W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, NY, USA, 1964)Google Scholar
  41. 41.
    N. S. Kopeika, J. Rosenbaum, Subnormal glow discharge detection of optical and microwave radiation. IEEE Trans. Plasma Sci. 4, 51–61 (1976)Google Scholar
  42. 42.
    N.S. Kopeika, Noise spectra of commercial indicator-lamp glow-discharge detectors. Int. J. Electron. 39, 209–218 (1975)CrossRefGoogle Scholar
  43. 43.
    N.S. Kopeika, N.H. Farhat, Video detection of millimeter waves with glow discharge tubes: part I-physical description; part II-experimental results. IEEE Trans. Electron Devices 22, 534–548 (1975)CrossRefADSGoogle Scholar
  44. 44.
    K. Nanbu, Probability theory of electron-molecule, ion-molecule, molecule-molecule, and coulomb collisions for particle modelling of materials processing plasmas and cases. IEEE Trans. Plasma Sci. 28, 971–990 (2000)CrossRefADSGoogle Scholar
  45. 45.
    S. Longo, Monte carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci. Technol. 9, 468–476 (2000)CrossRefADSGoogle Scholar
  46. 46.
    Compilation of electron cross sections used by A. V. Phelps. http://jilawww.colorado.edu/~avp/collision_data/electronneutral/ELECTRON.TXT. Cited 4 May 2018
  47. 47.
    Phelps database. http://www.lxcat.net. Cited 4 May 2018
  48. 48.
    Biagi database (Magboltz versions 8.9 and higher). http://www.lxcat.net. Cited 11 April 2018
  49. 49.
    A.V. Phelps, Diffusion, de-excitation, and three-body collision coefficients for excited neon atoms. Phys. Rev. 114, 1011–1025 (1959)CrossRefADSGoogle Scholar
  50. 50.
    A.V. Phelps, J.P. Molnar, Lifetimes of metastable states of noble gases. Phys. Rev. 89, 1202–1212 (1953)CrossRefADSGoogle Scholar
  51. 51.
    W.H. Cramer, Elastic and inelastic scattering of lowvelocity ions: He+ in Ne, Ne+ in He, and Ne+ in Ne. J. Chem. Phys. 28, 688–690 (1958)CrossRefADSGoogle Scholar
  52. 52.
    C. Kusoglu-Sarikaya, H. Altan, D. Akbar, Parallel 1d3v particle in cell/monte carlo collision (PIC/MCC) simulation of a glow discharge millimeter wave detector, in Proceedings of the 6th International Conference on Photonics, Optics and Laser Technology, vol. 1 (2018) pp. 110–115Google Scholar
  53. 53.
    H.D. Hagstrum, Auger ejection of electrons from tungsten by noble gas ions. Phys. Rev. 104, 317–318 (1956)CrossRefADSGoogle Scholar
  54. 54.
    H. Bruining, Physics and Applications of Secondary Electron Emission (Philips Research Laboratories, Netherlands, Eindhoven, 1954)zbMATHGoogle Scholar
  55. 55.
    L.B. Loeb, Basic Processes of Gaseous Electronics (University of California Press, California, 1960)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cemre Kusoglu-Sarikaya
    • 1
    Email author
  • Demiral Akbar
    • 2
  • Hakan Altan
    • 1
  1. 1.Middle East Technical UniversityDepartment of PhysicsAnkaraTurkey
  2. 2.Department of Mechanical EngineeringOstim Technical UniversityAnkaraTurkey

Personalised recommendations