Advertisement

From Tree Adjoining Grammars to Higher Order Representations of Abstract Meaning Representations via Abstract Categorial Grammars

  • Rasmus BlanckEmail author
  • Aleksandre Maskharashvili
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 860)

Abstract

We construct an Abstract Categorial Grammar (ACG) that interrelates Tree Adjoining Grammar (TAG) and Higher Order Logic (HOL) formulas encoding Abstract Meaning Representations (AMRs). We also propose another ACG that interrelates TAG and HOL formulas expressing neo-Davidsonian event semantics. Both of these encodings are based on the already existing ACG encoding of the syntax–semantics interface where TAG derivations are interpreted as HOL formulas representing Montague semantics. In particular, both of these encodings share the same abstract language coming from the ACG encoding of TAG with Montague semantics, which is second-order. For second-order ACGs, problems of parsing and generation are known to be of polynomial complexity. Thus we get the natural language generation and parsing with TAGs and HOL formulas modelling AMRs for free.

Notes

Acknowledgements

The research reported in this paper was supported by grant 2014-39 from the Swedish Research Council, which funds the Centre for Linguistic Theory and Studies in Probability (CLASP) in the Department of Philosophy, Linguistics, and Theory of Science at the University of Gothenburg. We are grateful to our colleagues in CLASP for helpful discussion of some of the ideas presented here. We also thank the anonymous reviewers and the LACompLing2018 audience for their valuable comments on an earlier draft of the paper.

References

  1. 1.
    Ajdukiewicz, K.: Die syntaktische Konnexität. Stud. Philos. 1, 1–27 (1935)Google Scholar
  2. 2.
    Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with AMR. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1699–1710. Association for Computational Linguistics (2015).  https://doi.org/10.18653/v1/D15-1198
  3. 3.
    Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings of the 7th Linguistics Annotation Workshop & Interoperability with Discourse, pp. 178–186. Sofia, Bulgaria (2013)Google Scholar
  4. 4.
    Bos, J.: Expressive power of abstract meaning representations. Comput. Linguist. 42(3), 527–535 (2016).  https://doi.org/10.1162/COLI_a_00257MathSciNetCrossRefGoogle Scholar
  5. 5.
    Champollion, L.: The interaction of compositional semantics and event semantics. Linguist. Philos. 38(1), 31–66 (2015).  https://doi.org/10.1007/s10988-014-9162-8CrossRefGoogle Scholar
  6. 6.
    Curry, H.B.: Some logical aspects of grammatical structure. Structure of language and its mathematical aspects. In: Proceedings of Symposium in Applied Mathematics, vol. XII, pp. 56–68. American Mathematical Society, Providence, R.I. (1961)Google Scholar
  7. 7.
    Danlos, L.: G-TAG: a lexicalized formalism for text generation inspired by tree adjoining grammar. In: Abeillé, A., Rambow, O. (eds.) Tree Adjoining Grammars: Formalisms, Linguistic Analysis, and Processing. CSLI Lecture Notes, vol. 107, pp. 343–370. CSLI Publications. http://www.linguist.univ-paris-diderot.fr/~danlos/Dossierpublis/G-TAG-eng’01.pdf (2000)
  8. 8.
    Danlos, L.: D-STAG: a formalism for discourse analysis based on SDRT and using synchronous TAG. In: de Groote, P., Egg, M., Kallmeyer, L. (eds.) 14th Conference on Formal Grammar—FG 2009. LNCS/LNAI, vol. 5591, pp. 64–84. Springer (2011).  https://doi.org/10.1007/978-3-642-20169-1_5CrossRefGoogle Scholar
  9. 9.
    Danlos, L., Maskharashvili, A., Pogodalla, S.: Interfacing sentential and discourse TAG-based grammars. In: Proceedings of the 12th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+12), pp. 27–37. http://www.aclweb.org/anthology/W16-3303 (2016)
  10. 10.
    Flanigan, J., Dyer, C., Smith, N.A., Carbonell, J.: Generation from abstract meaning representation using tree transducers. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 731–739. Association for Computational Linguistics (2016).  https://doi.org/10.18653/v1/N16-1087
  11. 11.
    Gardent, C., Perez-Beltrachini, L.: RTG based surface realisation for TAG. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), pp. 367–375. Coling 2010 Organizing Committee, Beijing, China. http://www.aclweb.org/anthology/C10-1042 (2010)
  12. 12.
    de Groote, P.: Towards abstract categorial grammars. In: Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference, pp. 148–155. http://aclweb.org/anthology/P/P01/P01-1033 (2001)
  13. 13.
    de Groote, P.: Tree-adjoining grammars as abstract categorial grammars. In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+6), pp. 145–150. Università di Venezia. http://www.loria.fr/equipes/calligramme/acg/publications/2002-tag+6.pdf (2002)
  14. 14.
    de Groote, P., Lebedeva, E.: Presupposition accommodation as exception handling. In: Fernandez, R., Katagiri, Y., Komatani, K., Lemon, O., Nakano, M. (eds.) The 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL 2010 Conference, pp. 71–74. Association for Computational Linguistics, Tokyo, Japan (2010)Google Scholar
  15. 15.
    de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial grammars: representing context-free formalisms. J. Log. Lang. Inf. 13(4), 421–438 (2004).  https://doi.org/10.1007/s10849-004-2114-xMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    de Groote, P., Winter, Y.: A type-logical account of quantification in event semantics. In: Logic and Engineering of Natural Language Semantics 11. Tokyo, Japan. https://hal.inria.fr/hal-01102261 (2014)
  17. 17.
    Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci. 10(1), 136–163 (1975).  https://doi.org/10.1016/S0022-0000(75)80019-5MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 69–123. Springer, Berlin, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59126-6_2CrossRefGoogle Scholar
  19. 19.
    Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (ACL), pp. 176–183. Association for Computational Linguistics, Prague, Czech Republic. http://www.aclweb.org/anthology/P07-1023 (2007)
  20. 20.
    Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170 (1958).  https://doi.org/10.2307/2271418MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Matthiessen, C.M.I.M., Bateman, J.A.: Text Generation and Systemic-Functional Linguistics. Pinter, London (1991)Google Scholar
  22. 22.
    Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: an annotated corpus of semantic roles. Comput. Linguist. 31(1), 71–106 (2005).  https://doi.org/10.1162/0891201053630264CrossRefGoogle Scholar
  23. 23.
    Pogodalla, S.: Computing semantic representation: Towards ACG abstract terms as derivation trees. In: Proceedings of TAG+7, pp. 64–71 (2004)Google Scholar
  24. 24.
    Pogodalla, S.: Advances in Abstract Categorial Grammars: Language Theory and Linguistic Modeling. ESSLLI 2009 Lecture Notes, Part II (2009)Google Scholar
  25. 25.
    Pogodalla, S.: A syntax-semantics interface for tree-adjoining grammars through abstract categorial grammars. J. Lang. Model. 5(3), 527–605 (2017).  https://doi.org/10.15398/jlm.v5i3.193CrossRefGoogle Scholar
  26. 26.
    Salvati, S.: A note on the complexity of abstract categorial grammars. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) The Mathematics of Language: 10th and 11th Biennial Conference, pp. 266–271. Springer, Berlin, Heidelberg (2010)Google Scholar
  27. 27.
    Sayeed, A., Demberg, V.: Incremental neo-Davidsonian semantic construction for TAG. In: Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), pp. 64–72. Paris, France. https://www.aclweb.org/anthology/W12-4608 (2012)
  28. 28.
    Shieber, S.M.: Evidence against the context-freeness of natural language. Linguist. Philos. 8(3), 333–343 (1985).  https://doi.org/10.1007/BF00630917CrossRefGoogle Scholar
  29. 29.
    Stabler, E.: Reforming AMR. In: Foret, A., Muskens, R., Pogodalla, S. (eds.) Formal Grammar, pp. 72–87. Springer, Berlin, Heidelberg (2018)CrossRefGoogle Scholar
  30. 30.
    Webber, B.L., Joshi, A.K.: Anchoring a lexicalized tree-adjoining grammar for discourse. In: Stede, M., Wanner, L., Hovy, E. (eds.) Discourse Relations and Discourse Markers, pp. 86–92. Association for Computational Linguistics. https://www.aclweb.org/anthology/W98-0315 (1998)
  31. 31.
    Winter, Y., Zwarts, J.: Event semantics and abstract categorial grammar. In: Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) The Mathematics of Language, pp. 174–191. Springer, Berlin, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Philosophy, Linguistics and Theory of ScienceUniversity of GothenburgGothenburgSweden

Personalised recommendations