Advertisement

Landscapes, Their Exploration and Utilisation: Status and Trends of Landscape Research

  • Lothar MuellerEmail author
  • Frank Eulenstein
  • Wilfried Mirschel
  • Marc Antrop
  • Michael Jones
  • Blair M. McKenzie
  • Nikolai M. Dronin
  • Lev K. Kazakov
  • Valery V. Kravchenko
  • Alexander V. Khoroshev
  • Maria Gerasimova
  • Ralf Dannowski
  • Uwe Schindler
  • Olga Ruhovich
  • Viktor G. Sychev
  • Askhad K. Sheudzhen
  • Denis Couvet
  • Guy M. Robinson
  • Winfried Blum
  • Tomasz Joniak
  • Ursula Eisendle
  • Maria Gabriella Trovato
  • Elmira Salnjikov
  • Michael Haubold-Rosar
  • Dirk Knoche
  • Michael Köhl
  • Debbie Bartlett
  • Jörg Hoffmann
  • Jörg Römbke
  • Frank Glante
  • Olga I. Sumina
  • Abdulla Saparov
  • Elena Bukvareva
  • Vitaly V. Terleev
  • Alex G. Topaj
  • Felix Kienast
Chapter
Part of the Innovations in Landscape Research book series (ILR)

Abstract

A new geological epoch has begun—the Anthropocene. Huge anthropogenic transformations of terrestrial landscapes over the past five decades have forced its declaration. Exploring of interaction of humans with nature in general, and with landscapes in particular, can be characterised properly by the terms ‘landscape research’ and ‘landscape science’. Landscape science has been a traditional scientific discipline of geography. This is the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English-speaking scientific community. As landscapes are multifunctional, highly complex systems, landscape research is a platform for disciplinary, interdisciplinary and transdisciplinary research. Landscape research in the Anthropocene must aim to combine landscape sustainability with high quality and productivity. This mission is in accord with the Sustainable Development Goals of the United Nations and the provisions of the Landscape Convention of the European Council. It includes halting landscape degradation, developing cultural landscapes and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and biodiverse environment are attributes of landscapes for the survival and well-being of humans in coexistence with nature. Landscape research must generate knowledge, innovations and responsible decision rules for achieving these aims. Big data gathering and scenario modelling are important for knowledge generation in a globalised world. International long-term experiments, observatories and monitoring systems will deliver data for comprehensive ecosystem models and decision support systems. Technical innovations must be imbedded in cultural solutions for the evolvement of landscapes. Springer International’s new book series ‘Innovations in Landscape Research’ aims to support better understanding, monitoring and managing landscapes. It contains a multitude of approaches and data. Some focus is on technical innovations for agri-environmental monitoring, on land and water management and its implications for landscape sustainability. Authors present novel tools for ecosystem modelling and forecasting of landscape processes, and on creating knowledge, rules and approaches for handling the multifunctionality of landscapes. The coming book series may serve as a knowledge, data and communication basis for informed decisions regarding the development of landscapes. It will enlarge our horizon and field of action by building bridges between scientific communities, scientific disciplines, and researchers and citizens.

Keywords

Landscape Research Status Trends Monitoring Anthropocene Ecosystems Modelling Data Land use Sustainability Innovations Cultural landscapes 

References

  1. Abelshauser W (1983) Wirtschaftsgeschichte der Bundesrepublik Deutschland (1945–1980) Edition Suhrkamp 1241 = NF 241 Neue historische Bibliothek). Suhrkamp, Frankfurt am Main 1983, ISBN 3-518-11241-4Google Scholar
  2. Acksel A, Kappenberg A, Kühn P, Leinweber P (2017) Human activity formed deep, dark topsoils around the Baltic Sea. Geoderma Regional 10:93–101.  https://doi.org/10.1016/j.geodrs.2017.05.005CrossRefGoogle Scholar
  3. Agrarbündnis (2015-2018) Der kritische Agrarbericht 2015 https://www.kritischer-agrarbericht.de/2015.346.0.html, Der kritische Agrarbericht 2016 https://www.kritischer-agrarbericht.de/2016.357.0.html, Der kritische Agrarbericht 2017 https://www.kritischer-agrarbericht.de/2017.368.0.html, Der kritische Agrarbericht 2018 https://www.kritischer-agrarbericht.de/2018.382.0.html. Accessed on 19 Dec 2018
  4. Ahern K, Cole L (2012) Landscape scale—towards an integrated approach. ECOS 33(3/4): 7–11. https://www.banc.org.uk/wp-content/uploads/2015/05/ECOS-33-3-4-6-Landscape-scale-integrated-approach.pdf. Accessed on 19 Dec 2018
  5. Alfani G (2011) The Famine of the 1590s in Northern Italy. An Analysis of the Greatest “System Shock” of Sixteenth Century. Histoire & Mesure. Edition EHESS, pp 17–50. https://journals.openedition.org/histoiremesure/4119
  6. Allen TR, Crawford T, Montz B, Whitehead J, Lovelace S, Hanks AD, Christensen AR, Kearney GD (2018) Linking water infrastructure, public health, and sea level rise: integrated assessment of flood resilience in coastal cities. Public Work Manag & Policy, 1–30.  https://doi.org/10.1177/1087724X18798380CrossRefGoogle Scholar
  7. Altieri M (1995, 2018) Agroecology. The science of sustainable agriculture. CRC Press, Boca Raton. 448 p. ebook version Taylor & Francis 2018. https://www.taylorfrancis.com/books/9780429964015
  8. Andersen PS, Andersen E, Graversgaard M, Christensen AA, Vejre H, Dalgaard T (2019) Using landscape scenarios to improve local nitrogen management and planning. J Environ Manage 232(15):523–530.  https://doi.org/10.1016/j.jenvman.2018.11.023CrossRefPubMedPubMedCentralGoogle Scholar
  9. Antić-Mladenović S, Kresović M, Čakmak D, Perović V, Saljnikov E, Ličina V, Rinklebe J (2018) Impact of a severe flood on large-scale contamination of arable soils by potentially toxic elements (Serbia). Environ Geochem Health, pp 1–18.  https://doi.org/10.1007/s10653-018-0138-4PubMedCrossRefPubMedCentralGoogle Scholar
  10. Antipov AN, Kravchenko VV, Semenov YuM et al (2006) Landscape planning: Tools and experience in implementation. Irkutsk: V.B. Sochava Institute of Geography SB RAS Publishers, 2006. 149 p. http://www.irigs.irk.ru/docs/lndscpln/Landscapeplannnig_Irkutsk_2006.pdf. Accessed on 19 Dec 2018
  11. Antonkiewicz J, Łabętowicz J (2016) Chemical innovation in plant nutrition in a historical continuum from ancient Greece and Rome until modern times. Chem Didact Ecol Metro 21(1–2):29–43.  https://doi.org/10.1515/cdem-2016-0002CrossRefGoogle Scholar
  12. Antrop M (1998) Landscape change: plan or chaos? Landsc Urban Plann 41:155–161CrossRefGoogle Scholar
  13. Antrop M (2000) Geography and landscape science. Belgeo (Online), pp 9–36  https://doi.org/10.4000/belgeo.13975. Accessed on 19 Dec 2018
  14. Antrop M, Van Eetvelde V (2017) Landscape perspectives. The holistic nature of landscape. Springer Science + Business Media B.V. Landscape Series, vol 23, 436 pGoogle Scholar
  15. Arend J (2017) Russlands Bodenkunde in der Welt. Eine ost-westliche Transfergeschichte 1880-1945, Vandenhoeck and Ruprecht, Göttingen, 308 pGoogle Scholar
  16. Arnaiz-Schmitz C, Herrero-Jáuregui C, Schmitz MF (2018) Losing a heritage hedgerow landscape. Biocultural diversity conservation in a changing social-ecological Mediterranean system. Sci Total Enviro 637–638:374–384.  https://doi.org/10.1016/j.scitotenv.2018.04.413CrossRefGoogle Scholar
  17. Augustin J, Hierold W, Sommer M, Deumlich D, Gerke HH, Koszinski S, Schröder B, Hufnagel J, Verch G, Wirth S, Jochheim H, Nendel C, Lischeid G, Schindler U, Siemens J, Lang F, Kaupenjohann M, Kirchner G, Schwank M (2011) CarboZALF–ein interdisziplinäres Landschaftsexperiment zum Kohlenstoffhaushalt von Agrarlandschaften. In: DBG Exkursionsführer 114/2011, pp 60–68 http://publ.ext.zalf.de/publications/a3625df3-001e-4ae7-b321-2e03d1fbfb4d.pdf. Accessed on 19 Dec 2018
  18. Baatz R, Sullivan PL, Li L, Weintraub SR, Loescher HW, Mirtl M, Groffman PM, Wall DH, Young M, White T, Wen H, Zacharias S, Kühn I, Tang J, Gaillardet J, Braud I, Flores AN, Kumar P, Lin H, Ghezzehei T, Jones J, Gholz HL, Vereecken H, Van Looy K (2018) Steering operational synergies in terrestrial observation networks: opportunity for advancing earth system dynamics modeling. Earth Syst Dyn 9(2):593–609.  https://doi.org/10.5194/esd-9-593-2018CrossRefGoogle Scholar
  19. Ball BC (2015) The landscape below: soil, spirituality and agriculture. Wild Goose Publications, Glasgow, 168 pGoogle Scholar
  20. Balykin D, Puzanov A, Stephan E, Meissner R (2016) Using the innovative lysimeter technology in the German–Russian Research Project “KULUNDA”. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham, pp 387–399.  https://doi.org/10.1007/978-3-319-24409-9_16Google Scholar
  21. Barau AS, Ludin ANM (2012) Intersection of landscape, Anthropocene and fourth paradigm. Living Rev Landscape Res 6:1. http://lrlr.landscapeonline.de/Articles/lrlr-2012-1/download/lrlr-2012-1Color.pdf. Accessed on 19 Dec 2018
  22. Bartlett D, Gomez-Martin E, Milliken S, Parmer D (2017) Introducing landscape character assessment and the ecosystem service approach to India: a case study. In: Landscape and urban planning. Elsevier. pp 257–266. ISSN 0169-2046, ISSN 0169-2046CrossRefGoogle Scholar
  23. Bastian O, Grunewald K, Khoroshev AV (2015) The significance of geosystem and landscape concepts for the assessment of ecosystem services: exemplified on a case study in Russia. Landscape Ecol 30(7):1145–1164CrossRefGoogle Scholar
  24. Baten J, Steckel R, Larsen C, Roberts C (2018) Multidimensional patterns of European health, work, and violence over the past two Millennia. In Steckel R, Larsen C, Roberts C, Baten J (eds) The backbone of Europe: health, diet, work and violence over two Millennia (Cambridge Studies in Biological and Evolutionary Anthropology, pp 381–396). Cambridge University Press, Cambridge.  https://doi.org/10.1017/9781108379830.015
  25. Baum T, Nendel C, Jacomet S, Colobran M, Ebersbach R (2016) “Slash and burn” or “weed and manure”? A modelling approach to explore hypotheses of late Neolithic crop cultivation in pre-alpine wetland sites. Veget Hist Archaeobot 25:611.  https://doi.org/10.1007/s00334-016-0583-xCrossRefGoogle Scholar
  26. Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A (2016) Characterisation of the N2O producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 66(6):2354–2361.  https://doi.org/10.1099/ijsem.0.001036CrossRefPubMedPubMedCentralGoogle Scholar
  27. Berg LS (1915) The objectives and tasks of geography (Predmet i zadachi geografii). Proc Imp Russ Geogr Soc 51(9):463–475 (in Russian)Google Scholar
  28. Berg LS (1930) Landscape-geographical zones of the USSR, 28 p. (in Russian, Берг Л.С. Ландшафтно-географические зоны СССР. Л. 1930. c. 28)Google Scholar
  29. Bhunia AK (2018) Introduction to foodborne pathogens. pp 1–23. In: Foodborne microbial pathogens. Food science text series. Springer, New York, NY.  https://doi.org/10.1007/978-1-4939-7349-1_1CrossRefGoogle Scholar
  30. Bjornlund V, Bjornlund H (2019) Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework. Agric Water Manag 213:454–467.  https://doi.org/10.1016/j.agwat.2018.10.037CrossRefGoogle Scholar
  31. Blackbourn D (2006) The conquest of nature. Water, landscape and the making of modern Germany. Jonathan Cape. 320 p. ISBN-10: 0224060716; ISBN-13: 978-0224060714Google Scholar
  32. Blum WEH (2017) Soils within cities: global approaches to their sustainable management—composition, properties, and functions of soils of the urban environment. Die Bodenkultur 68(1):71–72; ISSN 0006-5471CrossRefGoogle Scholar
  33. Bower B (2017) Science news. Magazine 192(9):16. https://www.sciencenews.org/article/how-asian-nomadic-herders-built-new-bronze-age-cultures. Accessed on 2 Feb 2019
  34. Brandt JJE, Bunce RGH, Howard DC, Petit S (2002) General principles of monitoring land cover change based on two case studies in Britain and Denmark. Landsc Urban Plann 62:37–51CrossRefGoogle Scholar
  35. Braunisch V, Segelbacher G, Hirzel AH (2010) Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Mol Ecol 19(17):3664–3678.  https://doi.org/10.1111/j.1365-294X.2010.04703.xCrossRefPubMedPubMedCentralGoogle Scholar
  36. Brown J, Mitchell B (2000) The stewardship approach and its relevance for protected landscapes. The George Wright Forum 17(1):70–79. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.450.6279&rep=rep1&type=pdf. Accessed on 19 Dec 2018
  37. Buckwell A, Heissenhuber A, Blum WEH (2014) The sustainable intensification of European Agriculture. A review. Sponsored by the Rise Foundation, 96 p. http://www.risefoundation.eu/images/files/2014/2014_%20SI_RISE_FULL_EN.pdf. Accessed on 19 Dec 2018
  38. Bukvareva E (2018) The optimal biodiversity–a new dimension of landscape assessment. Ecol Indic 94(2):6–11.  https://doi.org/10.1016/j.ecolind.2017.04.041CrossRefGoogle Scholar
  39. Bukvareva E, Grunewald K, Bobylev S, Zamolodchikov D, Zimenko A, Bastian O (2015) The current state of knowledge of ecosystems and ecosystem services in Russia: a status report. AMBIO. 44(6):491–507.  https://doi.org/10.1007/s13280-015-0674-4PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bukvareva E, Zamolodchikov D, Grunewald K (2018) National assessment of ecosystem services in Russia: methodology and main problems. Sci Total Environ 655:1181–1196.  https://doi.org/10.1016/j.scitotenv.2018.11.286CrossRefPubMedPubMedCentralGoogle Scholar
  41. Bunkus R, Theesfeld I (2018) Land grabbing in Europe? Socio-cultural externalities of large-scale land acquisitions in East Germany. Land 7:98.  https://doi.org/10.3390/land7030098CrossRefGoogle Scholar
  42. Carson R (1964) Silent Spring, 1st edn. Fawcett Crest. 304 pGoogle Scholar
  43. Caubel J, de Cortazar-Atauri IG, Vivant AC, Launay M, de Noblet-Ducoudré N (2018) Assessing future meteorological stresses for grain maize in France. Agric Syst 159:237–247.  https://doi.org/10.1016/j.agsy.2017.02.010CrossRefGoogle Scholar
  44. CAWa Flyer (2017) Regional research network “Central Asian Water”. https://www.cawa-project.net/fileadmin/cawa/00_home/Flyer_November17-Webversion.pdf. Accessed on 19 Dec 2018
  45. Chibilev AA (2017) The origins and development paths of zapovednik management in Russia. Geogr Nat Resour 38(3):211–216.  https://doi.org/10.1134/S1875372817030015CrossRefGoogle Scholar
  46. CLaD (2016) About CLaD. Centre for Landscape Democracy (CLaD), Norwegian University of Life Sciences. https://www.nmbu.no/en/faculty/landsam/research/centers/clad/about. Accessed on 21 Feb 2019
  47. Claudino-Sales V (2019) Natural system of Wrangel Island Reserve, Russia. In: Coastal world heritage sites. Coastal Research Library, vol 28. Springer, Dordrecht, pp 209–214.  https://doi.org/10.1007/978-94-024-1528-5_31Google Scholar
  48. Colwell MA, Dubynin AV, Koroliuk AY, Sobolev NA (1997) Russian nature reserves and conservation of biological diversity. Nat Areas J 17(1):56–68. https://www.jstor.org/stable/43911637?seq=1#page_scan_tab_contents. Accessed on 19 Dec 2018
  49. Conigliani C, Cuffaro N, D’Agostino G (2018) Large-scale land investments and forests in Africa. Land Use Policy 75:651–660.  https://doi.org/10.1016/j.landusepol.2018.02.005CrossRefGoogle Scholar
  50. Cosgrove D (1984) Social formation and symbolic landscape. University of Wisconsin Press, MadisonGoogle Scholar
  51. Cosgrove D (2003) Landscape: ecology and semiosis. In: Palang H, Fry G (eds) Landscape interfaces. Cultural heritage in changing landscapes. Landscape series, vol 1. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 15–20Google Scholar
  52. Cottrell RS, Fleming A, Fulton EA, Nash KL, Watson RA, Blanchard JL (2018) Considering land–sea interactions and trade-offs for food and biodiversity. Glob Chang Biol 24(2):580–596.  https://doi.org/10.1111/gcb.13873CrossRefPubMedPubMedCentralGoogle Scholar
  53. COUNCIL OF EUROPE (2000) European Landscape Convention. Committee of Ministers of the Council of Europe. Florence. www.coe.int/EuropeanLandscapeConvention; https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=09000016802f80c6. Accessed on 19 Dec 2018
  54. Couvet D (2017) From biodiversity to policies to politics (Chap. 28). In: Peterson SA, Somit A (eds) Handbook of biology and politics. Edward Elgar Publications, Cheltenham, pp 487–512Google Scholar
  55. Couvet D (2018) Citizen and biodiversity governance (Chap. I/9). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes, Vol I Landscapes in the 21th Century: Status Analyses, Basic Processes and Research Concepts. © «FSBI “VNII Agrochemistry» 2018, pp 71–76.  https://doi.org/10.25680/1757.2018.97.98.009, http://vniia-pr.ru/monografii/pdf/tom1-9.pdf. Accessed on 19 Dec 2018
  56. Couvet D, Devictor V, Jiguet F, Julliard R (2011) Scientific contributions of extensive biodiversity monitoring. C R Biol 334:370–377.  https://doi.org/10.1016/j.crvi.2011.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  57. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts R, Brovkin V, Cox PM, Fischer V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373.  https://doi.org/10.1046/j.1365-2486.2001.00383.xCrossRefGoogle Scholar
  58. Crutzen PJ (2002) Geology of mankind. Nature 415:23.  https://doi.org/10.1038/415023aCrossRefPubMedPubMedCentralGoogle Scholar
  59. CVCE (2016) European NAvigator. Etienne Deschamps. 1958–1968 Successes and crises. http://www.cvce.eu/obj/1958_1968_successes_and_crises-en-5136b72a-0de2-4636-bda0-27e58b6c83e8.html. Accessed on 2 Feb 2019
  60. Daniels S, Cosgrove D (eds) (1988) The iconography of landscape. Essays on the symbolic representation, design and use of past environments. Cambridge University Press, CambridgeGoogle Scholar
  61. Dannowski R, Schindler R, Cremer N, Eulenstein F (2014) Methods of in situ groundwater quality monitoring: basis for the efficiency survey of agricultural groundwater conservation measures. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental Science And Engineering. Springer, Cham, pp 275–288.  https://doi.org/10.1007/978-3-319-01017-5_16Google Scholar
  62. De Maria M (2019) Understanding Land in the Context of large-scale land acquisitions: a brief history of land in economics. Land 8:15.  https://doi.org/10.3390/land8010015, https://www.mdpi.com/2073-445X/8/1/15CrossRefGoogle Scholar
  63. DeClerck FAJ, Jones SK, Attwood S, Bossio D, Girvetz E, Chaplin-Kramer B, Enfors E, Fremier AK, Gordon LJ, Kizito F, Lopez Noriega I, Matthews N, McCartney M, Meacham M, Noble A, Quintero M, Remans R, Soppe R, Willemen L, Wood SLR, Zhang W (2016) Agricultural ecosystems and their services: the vanguard of sustainability?. Curr Opin Environ Sustain 23:92–99.  https://doi.org/10.1016/j.cosust.2016.11.016CrossRefGoogle Scholar
  64. Dell’Angelo J, D’Odorico P, Rulli MC (2017) Threats to sustainable development posed by land and water grabbing. Curr Opin Environ Sustain 26–27:120–128.  https://doi.org/10.1016/j.cosust.2017.07.007CrossRefGoogle Scholar
  65. Deumlich D (2012) Struktur und Prozess - Einfluss historischer Landbewirtschaftung auf lineare Fließwege bei Starkregen in Brandenburg (D) Landscape Online 31:1–19.  https://doi.org/10.3097/lo.201231, https://www.landscapeonline.de/archive/2012/31/Deumlich_LO31_2012.pdfCrossRefGoogle Scholar
  66. Deumlich D, Kiesel J, Thiere J, Reuter HI, Völker L, Funk R (2006) Application of the SIte COMparison Method (SICOM) to assess the potential erosion risk: a basis for the evaluation of spatial equivalence of agri-environmental measures. CATENA 68(2–3):141–152CrossRefGoogle Scholar
  67. Deumlich D, Rogasik H, Hierold W, Onasch I, Völker L, Sommer M (2017) The CarboZALF-D manipulation experiment–experimental design and SOC patterns. Int J Environ Agric Res (IJOEAR) 3(1):40–50. https://ijoear.com/Paper-January-2017/IJOEAR-JAN-2017-3.pdf, ISSN: 2454-1850
  68. Dokuchaev VV (1883) Russian black earth (Russkii chernozem) St. Peterburg Imperatorskoe Vol’noe Ekonomicheskoe Obshchestvo 1883, 384 p (in Russian)Google Scholar
  69. Doyle-Capitman CE, Decker DJ, Jacobson CA (2018) Toward a model for local stakeholder participation in landscape-level wildlife conservation. Hum Dimens Wildl 23(4):375–390.  https://doi.org/10.1080/10871209.2018.1444215CrossRefGoogle Scholar
  70. Douley D, Audet P (2016) What part of mining are ecosystems? Defining success for the ‘restoration’ of highly disturbed Landscapes. In: Squires VR (ed) Ecological restoration. Global challenges, social aspects and environmental benefits. Nova Science Publishers, New York, pp 57–88Google Scholar
  71. Dramstad W, Olson JD, Forman RT (1996) Landscape ecology principles in landscape architecture and land-use planning. Island press, Washington DC. 80 p. ISBN-13: 978-1559635141, ISBN-10: 1559635142Google Scholar
  72. Driescher E (1974) Veränderungen an Gewässern Brandenburgs in historischer Zeit. In: Landesumweltamt Brandenburg, Studien und Tagungsberichte Nr. 47, Oct. 2003 (in German) https://mlul.brandenburg.de/media_fast/4055/q_bd47a.pdf. Accessed on 19 Dec 2018
  73. Dronin NM, Bellinger E (2005) Climate dependence and food problems in Russia (1900–1990). CEU Press, New York, Budapest, p 360Google Scholar
  74. Dronin N, Bychkova A (2018) Perceptions of American and Russian environmental scientists of today’s key environmental issues: a comparative analysis. Environ Dev Sustain 20(5):2095–2105.  https://doi.org/10.1007/s10668-017-9979-8CrossRefGoogle Scholar
  75. Dronin N, Kirilenko A (2011) Climate change, food stress, and security in Russia. Reg Environ Change 11(Suppl 1):167–178.  https://doi.org/10.1007/s10113-010-0165-xCrossRefGoogle Scholar
  76. Dyer RJ, Nason JD, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759.  https://doi.org/10.1111/j.1365-294X.2010.04748.xCrossRefPubMedPubMedCentralGoogle Scholar
  77. Eaton S, Ellis C, Genney D, Thompson R, Yahr R, Haydone DT (2018) Adding small species to the big picture: species distribution modelling in an age of landscape scale conservation. Biol Conserv 217:251–258.  https://doi.org/10.1016/j.biocon.2017.11.012CrossRefGoogle Scholar
  78. ECLAS (2018) European council of landscape Architecture Schools. http://www.eclas.org/index.php/about. Accessed on 19 Dec 2018
  79. Egoz S, Jørgensen K, Ruggeri D (eds) (2018) Defining landscape democracy. A path to spatial justice. Edward Elgar Publishing, Cheltenham, NorthamptonGoogle Scholar
  80. Eisendle-Flöckner U, Hilberg S (2014) Hard rock aquifers and free-living nematodes—an interdisciplinary approach based on two widely neglected components in groundwater research. Ecohydrology 8:368–377.  https://doi.org/10.1002/eco.1516CrossRefGoogle Scholar
  81. eLTER (2018) Long-Term Ecosystem Research in Europe. http://www.lter-europe.net/elter-esfri. Accessed on 19 Dec 2018
  82. Emanuelsson U (2009) The rural landscapes of Europe. How man has shaped European nature. The Swedish Research Council. Formas, 383 pGoogle Scholar
  83. Eulenstein F, Saparov A, Lukin S, Sheudshen AK, Mayer WH, Dannowski R, Tauschke M, Rukhovich OV, Lana M, Schindler R, Pachikin K, Drechsler H, Cremer N (2016) Assessing and controlling land use impacts on groundwater quality. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham, pp 635–666. https://link.springer.com/chapter/10.1007/978-3-319-24409-9_29Google Scholar
  84. Fairclough G, Herlin IS, Swanwick C (2018) Routledge handbook of landscape character assessment: current approaches to characterisation and assessment, 1st edn. Routledge, 294 pGoogle Scholar
  85. Falconer L, Hunter DC, Telfer TC, Ross LG (2013) Visual, seascape and landscape analysis to support coastal aquaculture site selection. Land Use Policy 34:1–10CrossRefGoogle Scholar
  86. Fan P, Chen J, Ouyang Z, Groisman P, Loboda T, Gutman G, Prishchepov AV, Kvashnina A, Messina J, Moore N, Qi J (2018) Urbanization and sustainability under transitional economies: a synthesis for Asian Russia. Environ Res Lett 13(9). IOP Publishing Ltd. http://iopscience.iop.org/article/10.1088/1748-9326/aadbf8/pdf
  87. FAO (2017) Voluntary guidelines for sustainable soil management. Food and agriculture organization of the United Nations. Rome, Italy. http://www.fao.org/3/a-bl813e.pdf. Accessed on 19 Dec 2018
  88. Federal Ministry of Food and Agriculture (BMEL) (2017) Organic Farming in Germany, as of: January 2017. http://www.bmel.de/SharedDocs/Downloads/EN/Agriculture/OrganicFarming/Organic-Farming-in-Germany.pdf;jsessionid=BB4C7A098D6FCFF68C51D48D2B00FC2E.1_cid385?__blob=publicationFile. Accessed on 19 Dec 2018
  89. Figuié M (2018) Collective action in response to emerging zoonotic diseases . In: Serge Morand MF (eds) Emergence of infectious diseases. Risks and issues for societies, pp 75–97. http://agritrop.cirad.fr/587548/1/ID587548.pdf. Accessed on 19 Dec 2018
  90. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10(4):603–628.  https://doi.org/10.1029/96GB02692CrossRefGoogle Scholar
  91. Frielinghaus M (2004) Albrecht Daniel Thaer in Brandenburg und Berlin. Fördergesellschaft Albrecht Daniel Thaer, Agrarhistorischer und kulturhistorischer Reiseführer. Findling, Neuenhagen 2004, ISBN 3-933603-28-5Google Scholar
  92. Frielinghaus M, Mueller L (1994) Ableitung von Zielen fuer die Landschaftsgestaltung eines Flussniederungsstandortes aus alten Kartenunterlagen. Archives of Agronomy and Soil Science Arch. Acker- Pflanzenbau Bodenkd, Berlin 38:115–126 (in German, Engl. summary)Google Scholar
  93. Frielinghaus M, Mueller L (2003) Landnutzung im Flusspolder Oderbruch in den letzten 250 Jahren (in German). Wasser & Boden 55(6):4–8Google Scholar
  94. Fry GLA (2001) Multifunctional landscapes—towards transdisciplinary research. Landsc Urban Plann 57(3):159–168.  https://doi.org/10.1016/s0169-2046(01)00201-8CrossRefGoogle Scholar
  95. García-Martín M, Plieninger T, Bieling C (2018) Dimensions of landscape stewardship across Europe: landscape values, place attachment, awareness, and personal responsibility. Sustainability 10(1):263.  https://doi.org/10.3390/su10010263CrossRefGoogle Scholar
  96. Gerasimova MI (2018) Updates of the Russian soil classification system (Chap. II/1). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. Vol II Understanding and monitoring processes in soils and water bodies, pp 12–16.  https://doi.org/10.25680/9874.2018.63.37.098, http://vniia-pr.ru/monografii/pdf/tom2-1.pdf. Accessed on 19 Dec 2018
  97. Gerasimova MI, Bezuglova O (2019) Functional-Environmental and properties-oriented approaches in classifying urban soils (In Memoriam Marina Stroganova) In: Vasenev II et al (eds) Urbanization: challenge and opportunity for soil functions and ecosystem services, Proceedings of the 9th SUITMA Congress, January 2019, Springer series Geography, pp 4–10.  https://doi.org/10.1007/978-3-319-89602-1_2Google Scholar
  98. Getz WM, Marshall CR, Carlson CJ, Giuggioli L, Ryan SJ, Romañach SS, Boettiger C, Chamberlain SD, Larsen LL et al (2018) Making ecological models adequate. Ecol Lett 21(2):153–166.  https://doi.org/10.1111/ele.12893CrossRefPubMedPubMedCentralGoogle Scholar
  99. Giani L, Makowsky L, Mueller K (2014) Plaggic Anthrosol: Soil of the Year 2013 in Germany: An overview on its formation, distribution, classification, soil function and threats. J Plant Nutr Soil Sci 177(3):320–329.  https://doi.org/10.1002/jpln.201300197CrossRefGoogle Scholar
  100. Glante F, Marx M, Römbke J (2018) Soil monitoring in Germany (Chap. II/18). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes.Vol II Understanding and Monitoring Processes in Soils and Water Bodies, pp 89–94.  https://doi.org/10.25680/7493.2018.26.90.115, http://vniia-pr.ru/monografii/pdf/tom2-18.pdf. Accessed on 19 Dec 2018
  101. Glinka KD (1927) The great soi1 groups of the world and their development (Translated from the German by CF Marbut.) Edwards Brothers, Ann Arbor, MI, 235 pGoogle Scholar
  102. Goldstein JL, Rivers D, Tomz M (2007) Institutions in international relations: understanding the effects of the GATT and the WTO on world trade. Int Org 61(1):37–67CrossRefGoogle Scholar
  103. Gontijo LM (2018) Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol Control. Available online 28 Oct 2018.  https://doi.org/10.1016/j.biocontrol.2018.10.014CrossRefGoogle Scholar
  104. Granö JG (1919-21) Altai. Vaellusvuosina nähtyä ja elettyä, 2 Vols. WSOY, PorvooGoogle Scholar
  105. Granö JG (1929) Reine Geographie. Eine methodologische Studie beleuchtet mit Beispielen aus Finnland und Estland. Acta Geographica 2:2Google Scholar
  106. Granö O (1979) Johannes Gabriel Granö 1882–1956. Geographers. Biobibliogr Stud 3:73–84Google Scholar
  107. Granö JG (1997) Pure geography. In: Granö O, Paasi A (eds) The John Hopkins University Press, Baltimore and LondonGoogle Scholar
  108. Grunewald K, Bastian O (eds) (2013) Ökosystemdienstleistungen – Konzept, Methoden und Fallbeispiele. Springer-Spektrum, Heidelberg, 332 p. https://www.springer.com/de/book/9783827429865
  109. Grunwald L-C, Belyaev VI, Hamann M, Illiger P, Stephan E, Bischoff N, Rudev NV, Kozhanov NA, Schmidt G, Frühauf M, Meinel T (2016) Modern cropping systems and technologies for soil conservation in Siberian agriculture. In: Mueller L, Sheudshen A, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer Water. Springer, Cham, pp 681–715.  https://doi.org/10.1007/978-3-319-24409-9_31Google Scholar
  110. Gubler A, Wächter D, Schwab P, Hug A, Meuli R, Keller A (2018) Long-term observation of soils within the Swiss soil monitoring network NABO (Chap. II/19). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 VolumesVol II Understanding and Monitoring Processes in Soils and Water Bodies, pp 94–99.  https://doi.org/10.25680/4039.2018.68.24.116, http://vniia-pr.ru/monografii/pdf/tom2-19.pdf. Accessed on 19 Dec 2018
  111. Gutzler C, Helming K, Balla D, Dannowski R, Deumlich D, Glemnitz M, Knierim A, Mirschel W, Nendel C, Paul C, Sieber S, Stachow U, Starick A, Wieland R, Wurbs A, Zander P (2015) Agricultural land use changes—a scenario-based sustainability impact assessment for Brandenburg, Germany. Ecol Indic 48(2015):505–517CrossRefGoogle Scholar
  112. Haase D, Schwarz N (2009) Simulation models on human–nature interactions in urban landscapes: a review including spatial economics, system dynamics, cellular automata and agent-based approaches. Living Rev Landsc Res 3:2. http://www.livingreviews.org/lrlr-2009-3. Accessed on 19 Dec 2018
  113. Hägerstrand T (1993) Samhälle och natur. In: Region och miljö – ekologiska perspektiv på den rumsliga närings- och bosättningsstrykturen. NordREFO 1:14–59Google Scholar
  114. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506.  https://doi.org/10.1038/nrmicro2795CrossRefPubMedPubMedCentralGoogle Scholar
  115. Hardt E, de Pablo CL, de Agar PM, Dos Santos RF, Pereira-Silva EF (2018) GIS-based detection and quantification of patch-boundary patterns for identifying landscape mosaics. Appl Ecol Environ Res 16(2):1381–1398. ISSN 1785 0037. http://dx.doi.org/10.15666/aeer/1602_13811398. Accessed on 19 Dec 2018CrossRefGoogle Scholar
  116. Haubold-Rosar M (2018) Methods of agricultural recultivation of post-mining landscapes in Northeastern Germany (Chap. V/38). In: Sychev, VG, Mueller, L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, Vol V Landscape planning, management and rehabilitation, pp 178–183. http://vniia-pr.ru/monografii/pdf/tom5-38.pdf. Accessed on 19 Dec 2018
  117. Helming K (2014) Impact assessment for multifunctional land use. In: Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer Environment, pp 223–234. https://link.springer.com/chapter/10.1007/978-3-319-01017-5_12Google Scholar
  118. Hertel C, von Unold G (2014) Third-generation lysimeters: scientific engineered monitoring systems. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham, pp 175–184.  https://doi.org/10.1007/978-3-319-01017-5_9Google Scholar
  119. Hettner A (1905) Das Wegen und Methoden der Geographie. Geographische Zeitschrift H 11:615–629Google Scholar
  120. Hettner A (1927) Die Geographie, ihre Geschichte, ihr Wesen und ihre Methoden. Hirt Verlag Breslau, 463 pGoogle Scholar
  121. Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data intensive scientific discovery, Published by Microsoft Research, October 2009 ISBN: 978-0-9825442-0-4Google Scholar
  122. Hilberg S, Eisendle-Flöckner U (2016) About faunal live in Austrian Aquifers—historical background and current developments. Austrian J Earth Sci AJES special issues Hydrogeology 109/1:119–134. http://dx.doi.org/10.17738/ajes.2016.0009. Accessed on 19 Dec 2018
  123. Hoffmann J, Kratz W (2018) Nationale Indikatoren mit Bezug zu Pflanzenschutz und Biodiversität in der Agrarlandschaft. Natur Landschaft 93(6):273–279Google Scholar
  124. Hoffmann C, Golozubov O, Alyabina I, Heinrich U (2018) Standards for the collection, management and provision of soil research data: two national case studies (Chap. I/12). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. Vol I Landscapes in the 21th Century: Status Analyses, Basic Processes and Research Concepts. © «FSBI “VNII Agrochemistry» 2018, pp 85–89.  https://doi.org/10.25680/6422.2018.85.59.012, http://vniia-pr.ru/monografii/pdf/tom1-12.pdf. Accessed on 19 Dec 2018
  125. Hoffmann J, Wittchen U, Berger G, Stachow U (2018) Moving window growth-A method to characterize the dynamic growth of crops in the context of bird abundance dynamics with the example of Skylark (Alauda arvensis). Ecol Evol 8(17): 8880–8893.  https://doi.org/10.1002/ece3.4398, https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4398PubMedPubMedCentralCrossRefGoogle Scholar
  126. Hoffmann M, Wirth S, Beßler H, Engels C, Jochheim H, Sommer M, Augustin J (2018c) Combining a root exclusion technique with continuous chamber and porous tube measurements for a pin-point separation of ecosystem respiration in croplands. J Plant Nutr Soil Sci 181(1):41–50.  https://doi.org/10.1002/jpln.201600489CrossRefGoogle Scholar
  127. Holden J, Grayson RP, Berdeni D, Bird S, Chapman PJ, Edmondson JL, Firbank LG, Helgason T, Hodson ME, Hunt SFP, Jones DT, Lappage MG, Marshall-Harries E, Nelson M, Prendergast-Miller M, Shaw H, Wade RN, Leake JR (2019) The role of hedgerows in soil functioning within agricultural landscapes. Agric Ecosyst Environ 273:1–12.  https://doi.org/10.1016/j.agee.2018.11.027CrossRefGoogle Scholar
  128. Holzschuh A, Dainese M, González-Varo JP, Mudri-Stojnić S, Riedinger V, Rundlöf M, Scheper J, Wickens JB, Wickens VJ, Bommarco R, Kleijn D, Potts SG, Roberts SPM, Smith HG, Vilà M, Vujić A, Steffan-Dewenter I (2016) Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol Lett 19:1228–1236.  https://doi.org/10.1111/ele.12657CrossRefPubMedPubMedCentralGoogle Scholar
  129. Hubatsch W (1989) Die Stein-Hardenbergschen Reformen. Darmstadt: Wissenschaftliche Buchgesellschaft, 1989 ISBN 3-534-05357-5Google Scholar
  130. IALE (2018) International Association for Landscape Ecology. http://www.landscape-ecology.org/home.html. Accessed on 19 Dec 2018
  131. ICOMOS (2018) International Council on Monuments and Sites. https://www.icomos.org/fr/. Accessed on 19 Dec 2018
  132. IFLA (2018) International Federation of Landscape Architects. http://iflaonline.org/. Accessed on 19 Dec 2018
  133. IGU (2018) International Geographical Union. https://igu-online.org/. Accessed on 19 Dec 2018
  134. Iles L (2016) The role of metallurgy in transforming global forests. J Archaeol Method Theory 23(4):1219–1241. ISSN 1072-5369.  https://doi.org/10.1007/s10816-015-9266-7CrossRefGoogle Scholar
  135. ISCO (2018) International Soil Conservation Organization. https://www.tucson.ars.ag.gov/isco/. Accessed on 19 Dec 2018
  136. ISO 14040:2006 (2006) Environmental management—life cycle assessment—principles and framework. International Organisation for Standardisation (ISO), Geneve. https://www.iso.org/standard/37456.html/. Accessed on 19 Dec 2018
  137. ISTRO (2018) International Soil and Tillage Research Organization. https://www.istro.org/. Accessed on 19 Dec 2018
  138. IUCN (2018) International Union for the Conservation of Nature. https://www.iucn.org/. Accessed on 19 Dec 2018
  139. IUSS (2018) International Union of Soil Sciences. https://www.iuss.org/. Accessed on 19 Dec 2018
  140. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 192 p. http://www.fao.org/3/i3794en/I3794en.pdf. Accessed on 19 Dec 2018
  141. Jackson JB (1986) The vernacular landscpe. In: Penning-Rowsell EC, Lowenthal D (eds) Landscape meanings and values. Allen and Unwin, London, pp 65–81Google Scholar
  142. Jellicoe G, Jellicoe S (1987) The landscape of man: shaping the environment from prehistory to the present day. Thames & Hudson Ltd, 2nd revised edition, 400 p. ISBN 9780500274316Google Scholar
  143. Jiang C, Liu J, Zhang H, Zhang Z, Wang D (2019a) China’s progress towards sustainable land degradation control: insights from the northwest arid regions. Ecol Eng 127:75–87.  https://doi.org/10.1016/j.ecoleng.2018.11.014CrossRefGoogle Scholar
  144. Jiang L, Bao A, Jiapaer G, Guo H, Zheng G, Gafforov K, Kurban A, De Maeyer P (2019b) Monitoring land sensitivity to desertification in Central Asia: convergence or divergence? Sci Total Environ 658:669–683.  https://doi.org/10.1016/j.scitotenv.2018.12.152CrossRefPubMedPubMedCentralGoogle Scholar
  145. Jones M (1993) Landscape as a resource and the problem of landscape values. In: Rusten C, Wøien H (eds) The politics of environmental conservation. Proceedings from a Workshop in Trondheim March 26, 1993. Report no. 6/93. University of Trondheim, Centre for Environment and Development, Trondheim, pp 19–33Google Scholar
  146. Jones M (2003a) The concept of cultural landscape: discourse and narratives. In: Palang H, Fry G (eds) Landscape interfaces. Cultural heritage in changing landscapes. Landscape Series Vol 1. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 21–51.  https://doi.org/10.1007/978-94-017-0189-1Google Scholar
  147. Jones M (2003b) Human geographical landscapes. J. G. Granö’s approach to landscape as scientist and artist. In: Granö O (ed) Origin of landscape science. J.G. Granö and a New Pure Geography for a New State. A Collection of Papers. Turun yliopiston maantietieteen laitoksen julkaisuja – Publicationes Instituti Geographici Universitatis Turkuensis 167: 71–98Google Scholar
  148. Jones M (ed) (2006) Essays on landscape law and justice. Norsk Geografisk Tidsskrift–Norwegian. J Geogr 60(1):1–127Google Scholar
  149. Jones M (2009) Analysing landscape values expressed in planning conflicts over change in the landscape. In: Van Eetvelde V, Sevenant M, Van De Velte L (eds) Re-Marc-able Landscapes. Marc-ante Landschappen. Liber Amicorum Marc Antrop. Academia Press, Gent, pp 193–205Google Scholar
  150. Jones M, Daugstad K (1997) Usages of the “cultural landscape” concept in Norwegian and Nordic landscape administration. Landsc Res 22(3):267–281.  https://doi.org/10.1080/01426399708706515CrossRefGoogle Scholar
  151. Jones M, Olwig KR (eds) (2008) Nordic Landscapes. Region and Belonging on the Northern Edge of Europe. University of Minnesota Press, Minneapolis 628 p. ISBN: 978-0-8166-3915-1Google Scholar
  152. Jones M, Stenseke M (eds) (2011) The European landscape convention. Challenges of participation. Landscape Series Vol 13. Springer, Dordrecht.  https://doi.org/10.1007/978-90-481-9932-7Google Scholar
  153. Joniak T (2018) Concentration of nutrients and N:P ratio in surface sediments of small water bodies of agricultural and forest areas. In: SGEM 2018 GeoConference Proceedings 18, vol 51, pp 213–220Google Scholar
  154. Joniak T, Kuczyńska-Kippen N, Gąbka M (2017) Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies. Hydrobiologia 793(1):121–133.  https://doi.org/10.1007/s10750-016-2913-5CrossRefGoogle Scholar
  155. Jordan WR, Gilpin ME, Aber JD (eds) (1987) Restoration ecology: a synthetic approach to ecological research. Cambridge University Press, Cambridge. 347 p. ISBN 0521331102Google Scholar
  156. Jørgensen K, Clemetsen M, Thorén KH, Richardson T (eds) (2016) Mainstreaming landscape through the European landscape convention. Routledge, Abingdon and New YorkGoogle Scholar
  157. Journal Landscape Research (2018) http://www.tandfonline.com/loi/clar20. Accessed on 19 Dec 2018
  158. Kappler C, Kaiser K, Tanski P, Klos F, Fülling A, Mrotzek A, Sommer M, Bens O (2018) Stratigraphy and age of colluvial deposits indicating Late Holocene soil erosion in northeastern Germany. CATENA 170:224–245.  https://doi.org/10.1016/j.catena.2018.06.010CrossRefGoogle Scholar
  159. Karampiperis P, Lokers R, Neveu P, Hologne O, Kakaletris G, Candela L, Filter M, Manouselis N, Stavrakaki M, Zervas P (2019) Big data in agricultural and food research: challenges and opportunities of an integrated big data E-infrastructure. In: Emrouznejad A, Charles V (eds) Big data for the greater good. Studies in big data. Springer, Cham, Vol 42, pp 129–150.  https://doi.org/10.1007/978-3-319-93061-9_6Google Scholar
  160. Kavanaugh MT, Oliver MJ, Chavez FP, Letelier RM, Muller-Karger FE, Doney SC (2016) Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J Mar Sci 73(7):1839–1850.  https://doi.org/10.1093/icesjms/fsw086CrossRefGoogle Scholar
  161. Kazakov LK, Chizhova VP (2001) Engineering geography. Moscow, Landros, 268 p. (in Russian, Казаков Л.К., Чижова В.П. Инженерная география.- М.: Лэндрос, 2001.– 268с)Google Scholar
  162. Kelly C (2007) The roman empire: a very short introduction. Oxford University Press, 168 p. ISBN 0192803913Google Scholar
  163. Kern J, Giani L, Teixeira W, Lanza G, Glaser B (2019) What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration? CATENA 172:104–112.  https://doi.org/10.1016/j.catena.2018.08.008CrossRefGoogle Scholar
  164. Kersebaum KC (2007) Modelling nitrogen dynamics in soil-crop systems with HERMES. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany, 2007, pp 59–73. Springer, DordrechtGoogle Scholar
  165. Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) (2007) Modelling water and nutrient dynamics in soil-crop systems: proceedings of the workshop on “Modelling water and nutrient dynamics in soil-crop systems” held on 14–16 June 2004 in Müncheberg, Germany, 2007, 271 p. Springer, DordrechtGoogle Scholar
  166. Kersebaum KC, Boote KJ, Jorgenson JS, Nendel C, Bindi M, Frühauf C, Gaiser T, Hoogenboom G, Kollas C, Olesen JE, Rötter RP, Ruget F, Thorburn PJ, Trnka M, Wegehenkel M (2015) Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Env Model Software 72:402–417.  https://doi.org/10.1016/j.envsoft.2015.05.009CrossRefGoogle Scholar
  167. Kersebaum KC, Kroes J, Gobin A, Takáč J, Hlavinka P, Trnka M, Ventrella D, Giglio L, Ferrise R, Moriondo M, Dalla Marta A, Luo Q, Eitzinger J, Mirschel W, Weigel H-J, Manderscheid R, Hoffmann M, Nejedlik P, Hösch J (2016) Assessing the uncertainty of model based water footprint estimation using an ensemble of crop growth models on winter wheat. Water 8:571.  https://doi.org/10.3390/w8120571CrossRefGoogle Scholar
  168. Khoroshev AV (2016) Modern directions of structural landscape science. Proceedings of the Russian Academy of Sciences. Geographical Series, Science Publishing Moscow № 3, pp 7–15 (in Russian, Хорошев А.В. 2016 Современные направления структурного ландшафтоведения. Известия Российской академии наук. Серия географическая, издательство Наука (М.), № 3, с. 7–15)Google Scholar
  169. Kienast F, Frick J, van Strien MJ, Hunziker M (2015) The Swiss landscape monitoring program —a comprehensive indicator set to measure landscape change. Ecol Modell 295:136–150.  https://doi.org/10.1016/j.ecolmodel.2014.08.008CrossRefGoogle Scholar
  170. Kiryushin VI (1995) Methodology for the development of adaptive-landscape farming systems and technologies for the cultivation of agricultural crops, Moscow, Timiryasev Academy 1995, 81 p (in Russian) (Кирюшин В.И. Методика разработки адаптивно-ландшафтных систем земледелия и технологий возделывания сельскохозяйственных культур.-М. МСХА им.К.А.Тимирязева, 1995. - 81с.)Google Scholar
  171. Knoche D (2018) Forest reclamation in post-mining landscapes—The Lusatian Lignite District, Eastern Germany (Chap. V/39). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia, Vol. V Landscape planning, management and rehabilitation, pp 183–188. http://vniia-pr.ru/monografii/pdf/tom5-39.pdf. Accessed on 19 Dec 2018
  172. Knoche D, Schlenstedt J (2018) Forest reclamation in the Lusatian Lignite District - A wounded landscape heading for new horizons. In: Proceedings of the 12th international conference on mine closure, 03.-07.09.2018, Leipzig, pp 677–688Google Scholar
  173. Koch J, Dorning MA, Van Berkel DB, Beck SM, Sanchez GM, Shashidharan A, Smart LS, Zhang Q, Smith JW, Meentemeyer RK (2019) Modeling landowner interactions and development patterns at the urban fringe. Landsc and Urban Plann 182:101–113.  https://doi.org/10.1016/j.landurbplan.2018.09.023CrossRefGoogle Scholar
  174. Köhl M, Lasco R, Cifuentes M, Jonsson Ö, Korhonen KT, Mundhenk P, Navar Jde J, Stinson G (2018) Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global forest resource assessment. For Ecol Manage 352(2015):21–34.  https://doi.org/10.1016/j.foreco.2015.05.036CrossRefGoogle Scholar
  175. Köppke U, Schnug E (2017) Biolandwirtschaft: Angewandter Hochwasserschutz. Ökologie & Landbau 34–35Google Scholar
  176. Körschens M, Albert E, Baumecker M, Ellmer F, Grunert M, Hoffmann S, Kismanyoky T, Kubat J, Kunzova E, Marx M, Rogasik J, Rinklebe J, Rühlmann J, Schilli C, Schröter H, Schroetter S, Schweizer K, Toth Z, Zimmer J, Zorn W (2014) Humus und Klimaänderung - Ergebnisse aus 15 langjährigen Dauerfeldversuchen. Arch Agron Soil Sci 60(11):1485–1517CrossRefGoogle Scholar
  177. Kovács-Hostyánszki A, Földesi R, Báldi A, Endrédi A, Jordán F (2019) The vulnerability of plant-pollinator communities to honeybee decline: a comparative network analysis in different habitat types. Ecol Indic 97:35–50.  https://doi.org/10.1016/j.ecolind.2018.09.047CrossRefGoogle Scholar
  178. Kowarik I, Körner S (eds) (2005) Wild urban woodlands. New perspectives for urban forestry. Springer, Berlin/Heidelberg. https://www.springer.com/de/book/9783540239123Google Scholar
  179. Kowarik I, Fischer LK, Honold J (2016) Beeinflusst Artenvielfalt die Wertschätzung der Stadtnatur? In: Kowarik I, Bartz R, Brenck M (eds) Naturkapital Deutschland – TEEB DE (2016): Ökosystemleistungen in der Stadt – Gesundheit schützen und Lebensqualität erhöhen. Technische Universität Berlin, Helmholtz-Zentrum für Umweltforschung – UFZ. Berlin, Leipzig, 300 p. https://www.agrar.hu-berlin.de/de/institut/departments/daoe/bk/forschung/klimagaerten/weiterfuehrende-materialien-1/2016_teeb-oekosystemleistungen-in-der-stadt.pdf. Accessed on 19 Dec 2018
  180. Kravchenko VV, Wende W, Ignatov AV et al (2008) Assessment of environmental impacts and ecological expertise: professional experience of EIA issues in Russia and Germany (in Russian and German) (Кравченко, В. В., Венде, В., Игнатов, А. В. и др. Оценка воздействия на окружающую среду, и экологическая экспертиза / Изд-во Института географии СО РАН: Иркутск - Берлин – Бонн, 2008. – 199 с.) http://www.irigs.irk.ru/files/EE%20und%20OVOS%20russian%20version.pdf. Accessed on 19 Dec 2018
  181. Krebs N (1922) Natur und Kulturlandschaft. Zeitschrift der Gesellschaft für Erdkunde zu Berlin 3–4:81–94Google Scholar
  182. Kröger M (2019) The global land rush and the arctic. In: Finger M, Heininen L (eds) The global arctic handbook. Springer, Cham, pp 27–43.  https://doi.org/10.1007/978-3-319-91995-9_3Google Scholar
  183. Kulunda Portal (2018) How to prevent the next “Global Dust Bowl”? Ecological and Economic Strategies for Sustainable Land Management in the Russian Steppes: A Potential Solution to Climate Change. http://www.kulunda.eu/?q=en/home. Accessed on 19 Dec 2018
  184. Küster HJ (1997) Geschichte der Landschaft in Mitteleuropa. C. H. Beck, München 1997, ISBN 3-406-45357-0Google Scholar
  185. Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64.  https://doi.org/10.1051/agro:2007025CrossRefGoogle Scholar
  186. Lal R, Stewart BA (2011) World soil resources and food security. CRC Press, Boca Raton, 574 pGoogle Scholar
  187. Landauer M, Juhola S (2019) Loss and damage in the rapidly changing Arctic. In: Mechler R, Bouwer L, Schinko T, Surminski S, Linnerooth-Bayer J (eds) Loss and damage from climate change. Climate risk management, policy and governance. Springer, Cham.  https://doi.org/10.1007/978-3-319-72026-5_18Google Scholar
  188. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180.  https://doi.org/10.1038/nature14258CrossRefPubMedPubMedCentralGoogle Scholar
  189. Lieske B (2011) Selbstverständnis des russischen Naturschutzes und die Entwicklung der Sapowedniks – eine Interviewstudie. Waldökologie, Landschaftsforschung und Naturschutz Heft 11 (2011) pp 63–79. http://www.afsv.de/download/literatur/waldoekologie-online/waldoekologie-online_heft-11-2.pdf. Accessed on 19 Dec 2018
  190. Lin H (2012) Hydropedology. Synergistic integration of soil science and hydrology, 1st edn. Academic Press, Cambridge, 858 pGoogle Scholar
  191. Lipski S, Storozhenko O (2019) Russia’s circumpolar territories inhabited by indigenous peoples: economic and legal aspects of development, pp 470–494.  https://doi.org/10.4018/978-1-5225-6954-1.ch022. In: Erokhin V, Gao T, Zhang X (eds) Handbook of research on international collaboration, economic development, and sustainability in the Arctic. 703 p.  https://doi.org/10.4018/978-1-5225-6954-1
  192. Lipský Z (1995) The changing face of the Czech rural landscape. Landsc Urban Plann 31(1):39–45CrossRefGoogle Scholar
  193. Lischeid G, Kalettka T, Holländer M, Steidl J, Merz C, Dannowski R, Hohenbrink T, Lehr C, Onandia G, Reverey F, Pätzig M (2018) Natural ponds in an agricultural landscape: external drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica 68:5–16.  https://doi.org/10.1016/j.limno.2017.01.003CrossRefGoogle Scholar
  194. Lohrberg F, Lička L, Scazzosi L, Timpe A (eds) (2015) Urban agriculture Europe. Jovis. 232 p. ISBN 978-3-86859-371-6Google Scholar
  195. Low SA, Adalja A, Beaulieu E, Key N, Martinez S, Melton A, Perez A, Ralston K, Stewart H, Suttles S, Vogel S, Jablonski BBR (2015) Trends in U.S. Local and Regional Food Systems. AP-068, U.S. Department of Agriculture, Economic Research Service, January 2015. 86 p. https://scholarship.sha.cornell.edu/cgi/viewcontent.cgi?referer=https://scholar.google.de/&httpsredir=1&article=2062&context=articles. Accessed on 19 Dec 2018Google Scholar
  196. Lowenthal D (1968) The American scene. Geogr Rev 58:61–88CrossRefGoogle Scholar
  197. Lowenthal D (1985) The past is a foreign country. Cambridge University Press, CambridgeGoogle Scholar
  198. Lowenthal D (1996) Possessed by the past. The heritage crusade and the spoils of history. The Free Press, New YorkGoogle Scholar
  199. Lowenthal D, Prince H (1965) English landscape tastes. Geogr Rev 54:309–346CrossRefGoogle Scholar
  200. Maldonado AD, Aguilera PA, Salmerón A, Nicholson AE (2018) Probabilistic modeling of the relationship between socioeconomy and ecosystem services in cultural landscapes. Ecosyst Serv 33:146–164.  https://doi.org/10.1016/j.ecoser.2018.04.007CrossRefGoogle Scholar
  201. Mancini MS, Galli A, Coscieme L, Niccolucci V, Lin D, Pulselli FM, Bastianoni S, Marchettini N (2018) Exploring ecosystem services assessment through ecological footprint accounting. Ecosyst Serv 30:228–235.  https://doi.org/10.1016/j.ecoser.2018.01.010CrossRefGoogle Scholar
  202. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197.  https://doi.org/10.1016/S0169-5347(03)00008-9CrossRefGoogle Scholar
  203. Marsh GP (1864) Man and nature. Or, physical geography as modified by human action. Charles Scribner & Co., New YorkCrossRefGoogle Scholar
  204. Martellozzo F, Amato F, Murgante B, Clarke KC (2018) Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Appl Geogr 91:156–167.  https://doi.org/10.1016/j.apgeog.2017.12.004CrossRefGoogle Scholar
  205. Martin P (2008) Epidemics: lessons from the past and current patterns of response. Comptes Rendus Geosci 340(9–10):670–678.  https://doi.org/10.1016/j.crte.2007.12.005CrossRefGoogle Scholar
  206. Masyagina OV, Evgrafova SYu, Bugaenko TN, Kholodilova VV, Krivobokov LV, Korets MA, Wagner D (2019) Permafrost landslides promote soil CO2 emission and hinder C accumulation. Sci Total Environ 657:351–364.  https://doi.org/10.1016/j.scitotenv.2018.11.468CrossRefPubMedPubMedCentralGoogle Scholar
  207. Mathieson I et al (2015) Eight thousand years of natural selection in Europe.  https://doi.org/10.1101/016477, https://www.biorxiv.org/content/10.1101/016477v2. Accessed on 2 Feb 2019
  208. McKenzie BM, Stobart R, Brown JL, George TS, Morris N, Newton AC, Valentine TA, Hallett PD (2017) Platforms to test and demonstrate sustainable soil management: integration of major UK field experiments, AHDB Final Report RD-2012-3786, 178 pGoogle Scholar
  209. McNeill WH (1987) The eccentricity of wheels, or eurasian transportation in historical perspective. Am Hist Rev 92:1111–1126CrossRefGoogle Scholar
  210. McPartland MY, Kane ES, Falkowski MJ, Kolka R, Turetsky MR, Palik B, Montgomery RA (2019) The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biol 25(1):93–107.  https://doi.org/10.1111/gcb.14465CrossRefGoogle Scholar
  211. Meemken E-M, Qaim M (2018) Organic agriculture, food security, and the environment. Annual review of resource economics. Annu Rev Resour Econ 10:4.1–4.25  https://doi.org/10.1146/annurev-resource-100517-023252. Accessed on 19 Dec 2018CrossRefGoogle Scholar
  212. Meinel T, Grunwald LC, Akshalov K (2014) Modern technologies for soil management and conservation in Northern Kazakhstan. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham, pp 455–464.  https://doi.org/10.1007/978-3-319-01017-5_27Google Scholar
  213. Meissner R, Rupp H, Seyfarth M (2014) Advanced technologies in lysimetry. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental science and engineering. Springer, Cham, pp 159–173.  https://doi.org/10.1007/978-3-319-01017-5_8Google Scholar
  214. Meller H, Michel K (2018) Die Himmelsscheibe von Nebra. Der Schlüssel zu einer untergegangenen Kultur im Herzen Europas, Propyläen Verlag, 384 p, ISBN-13 9783549076460Google Scholar
  215. Mendel B, Schwemmer P, Peschko V, Müller S, Schwemmer H, Mercker M, Garthe S (2019) Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.). J Environ Manage 231:429–438.  https://doi.org/10.1016/j.jenvman.2018.10.053CrossRefPubMedPubMedCentralGoogle Scholar
  216. Mengel P (1930) Das Oderbruch, vol 1. Verlagsgesellschaft R. Müller m.b.H, Eberswalde, p 1930Google Scholar
  217. Mengel P (1934) Das Oderbruch, vol 2. Verlagsgesellschaft R. Müller m.b.H, Eberswalde, p 1934Google Scholar
  218. Meynen E, Schmithüsen J (eds) (1953-1962) Handbuch der naturräumlichen Gliederung Deutschlands. Bundesanstalt für Landeskunde, 8 VolGoogle Scholar
  219. Micallef A, Rangel-Buitrago N (2019) The management of coastal landscapes. In: Rangel-Buitrago N (eds) Coastal scenery. Coastal research library. Springer, Cham, vol 26, pp 211–247.  https://doi.org/10.1007/978-3-319-78878-4_7Google Scholar
  220. Miklos L, Kočická E, Izakovicova Z, Esprit D, Špinerová A, Diviaková A, Miklósová V (2019) Landscape as a geosystem. Springer International Publishing, 161 p. https://www.springer.com/us/book/9783319940236
  221. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC. 137 p. https://www.millenniumassessment.org/documents/document.356.aspx.pdf. Accessed on 19 Dec 2018
  222. Mirschel W, Wieland R, Wenkel K-O, Nendel C, Guddat C (2014) YIELDSTAT - a spatial yield model for agricultural crops. Eur J Agron 52(2014):33–46.  https://doi.org/10.1016/j.eja.2013.09.015CrossRefGoogle Scholar
  223. Mirschel W, Wenkel K-O, Berg M, Wieland R, Nendel C, Köstner B, Topazh AG, Terleev VV, Badenko VL (2016a) A spatial model-based decision support system for evaluating agricultural landscapes under the aspect of climate change. In: Müller L, Sheudshen AK, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia. Springer International Publishing, Cham, pp 519–540. https://link.springer.com/chapter/10.1007/978-3-319-24409-9_23Google Scholar
  224. Mirschel W, Barkusky D, Hufnagel J, Kersebaum K-C, Nendel C, Laacke L, Luzi K, Rosner G (2016b) Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany. Open Data J Agric Res 2(1):1–10. https://odjar.org/article/view/15412
  225. Mirtl, M (2010) Introducing the next generation of ecosystem research in Europe: LTER-Europe’s Multi-Functional and Multi-Scale Approach. In: Müller F, Baessler C, Schubert H, Klotz S (eds) Long-term ecological research: between theory and application, pp 75–93.  https://doi.org/10.1007/978-90-481-8782-9_6CrossRefGoogle Scholar
  226. Mirtl M, Borer E, Burns E, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H, Orenstein D, Pauw J, Peterseil J, Shibata H, Wohner C, Yu X, Haase P (2018) Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future implications. Sci Total Environ 626:1439–1462.  https://doi.org/10.1016/j.scitotenv.2017.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  227. Mitchell D (1996) The lie of the land. Migrant workers and the California landscape. University of Minnesota Press, MinneapolisGoogle Scholar
  228. Mitchell D (2003) The right to the city. Social justice and the fight for public space. Guilford Press, New YorkGoogle Scholar
  229. Mitchell N, Rössler M, Tricaud P-M (eds) (2009) World heritage cultural landscapes. A handbook for conservation and management. Published by the UNESCO World Heritage Centre. http://whc.unesco.org/documents/publi_wh_papers_26_en.pdf. Accessed on 19 Dec 2018
  230. Mitscherlich EA (1931) Der Boden als Vegetationsfaktor (pflanzenphysiologische Bodenkunde). In: Handbuch der Bodenlehre. Hrs. E. Blanck, Springer Verlag Berlin 1931, Bd. 9, S. 497–541CrossRefGoogle Scholar
  231. Moon DG, Landa E (2017) The centenary of the journal soil science: reflections on the discipline in the United States and Russia around a hundred years ago. Soil Sci 182(6):203–215CrossRefGoogle Scholar
  232. Morrison R, Barker A, Handley J (2018) Systems, habitats or places: evaluating the potential role of landscape character assessment in operationalising the ecosystem approach. Landsc Res 43(7):1000–1012.  https://doi.org/10.1080/01426397.2017.1415314CrossRefGoogle Scholar
  233. Mueller L, Tille P, Hartleb R, Homer A (1988) Preparation and performance of drainage constructions in the Oderbruch region (Vorbereitung und Durchführung von Entwässerungsmaßnahmen im Oderbruch). (in German) Melioration und Landwirtschaftsbau, Berlin, 22(7):318–321Google Scholar
  234. Mueller L, Schindler U, Mirschel W, Shepherd TG, Ball B, Helming K, Rogasik J, Eulenstein F, Wiggering H (2010) Assessing the productivity function of soils: a review. Agron Sustain Dev 30(3):601–614.  https://doi.org/10.1051/agro/2009057CrossRefGoogle Scholar
  235. Mueller L, Schindler U, Ball BC, Smolentseva E, Sychev VG, Shepherd TG, Qadir M, Helming K, Behrendt A, Eulenstein F (2014a) Productivity potentials of the global land resource for cropping and grazing. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, Cham, pp 115–142. Environmental science and engineering.  https://doi.org/10.1007/978-3-319-01017-5_6Google Scholar
  236. Mueller L, Behrendt A, Shepherd TG, Schindler U, Ball BC, Khudyaev S, Kaiser T, Dannowski R, Eulenstein F (2014b) Simple field methods for measurement and evaluation of grassland quality. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Springer International Publishing, Cham, pp 199–222, Environmental Science and Engineering.  https://doi.org/10.1007/978-3-319-01017-5_11Google Scholar
  237. Mueller L, Schindler U, Hennings V, Smolentseva EN, Rukhovich OV, Romanenkov VA, Sychev VG, Lukin S, Sheudshen AK, Onishenko L, Saparov A, Pachikin K, Behrendt A, Mirschel W, Eulenstein F (2016a) An emerging method of rating global soil quality and productivity potentials. In: Mueller L, Sheudshen AK, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia, Springer Water. Springer International Publishing, Cham, pp 573–595. http://link.springer.com/chapter/10.1007%2F978-3-319-24409-9_26Google Scholar
  238. Mueller L, Sheudshen AK, Sychev VG, Romanenkov VA, Dannowski R, Eulenstein F (2016b) Potential of applying novel monitoring and management methods to Siberian landscapes. In: Mueller L, Sheudshen AK, Eulenstein F (eds) Novel methods for monitoring and managing land and water resources in Siberia, Springer Water. Springer International Publishing, Cham, pp 719–760. http://link.springer.com/chapter/10.1007/978-3-319-24409-9_32Google Scholar
  239. Mueller L, Eulenstein F, McKenzie BM, Schindler U, Mirschel W (2018) Tillage depth and crop yields: re-evaluation of Late Holocene soil tillage trials in Eastern and Central Europe (Chap. IV/64). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. Vol IV Optimising Agricultural Landscapes «FSBI “VNII Agrochemistry» 2018, pp 312–319.  https://doi.org/10.25680/1929.2018.23.16.329, http://vniia-pr.ru/monografii/pdf/tom4-64.pdf
  240. Müller T, Ruppel S, Behrendt U, Lentzsch P, Müller M (2018) Antagonistic potential of fluorescent pseudomonads colonizing wheat heads against mycotoxin producing Alternaria and Fusaria. Front Microbiol 9, Article 2124.  https://doi.org/10.3389/fmicb.2018.02124
  241. Musard O,‎ Le Dû-Blayo L,‎ Francour P, Beurier J-P, Feunteun E, Talassinos L (2014) Underwater seascapes: from geographical to ecological perspectives. Springer International Publishing, 291 p  https://doi.org/10.1007/978-3-319-03440-9, https://www.springer.com/la/book/9783319034393Google Scholar
  242. Naveh Z (2007) Transdisciplinary challenges in landscape ecology and restoration ecology—an Anthology. Landsc Ser 6(XVII):423 pGoogle Scholar
  243. Nearing MA, Xie Y, Liu B, Ye Y (2017) Natural and anthropogenic rates of soil erosion. Int Soil Water Conserv Res 5(2):77–84.  https://doi.org/10.1016/j.iswcr.2017.04.001CrossRefGoogle Scholar
  244. Neef E (1967) Die theoretischen Grundlagen der Landschaftslehre. Haack, Gotha, 1. Edt. 152 pGoogle Scholar
  245. Nendel C, Rötter RP, Thorburn PJ, Boote KJ, Ewert F (2019) Editorial Introduction to the Special Issue “Modelling cropping systems under climate variability and change: impacts, risk and adaptation”. Editorial Agric Syst 159:139–143.  https://doi.org/10.1016/j.agsy.2017.11.005CrossRefGoogle Scholar
  246. Newell JP, Henry LA (2016) The state of environmental protection in the Russian Federation: a review of the post-Soviet era. Eurasian Geogr Econ 57(6):779–801 (Russian Geographies and Economics)  https://doi.org/10.1080/15387216.2017.1289851CrossRefGoogle Scholar
  247. Ode A, Tveit MS, Fry G (2008) Capturing landscape visual character using indicators: touching base with landscape aesthetic theory. Landsc Res 33:89–117. http://www.tandfonline.com/doi/full/10.1080/01426390701773854. Accessed on 19 Dec 2018CrossRefGoogle Scholar
  248. Olwig KR (1996) Recovering the substantive nature of landscape. Ann Am Assoc Geogr 86:630–653CrossRefGoogle Scholar
  249. Olwig KR (2002) Landscape, nature and the body politic. From Britain’s Renaissance to America’s New World. University of Wisconsin Press, MadisonGoogle Scholar
  250. Olwig KR, Mitchell D (eds) (2009) Justice. Power and the political landscape, Routledge, Abingdon and New YorkGoogle Scholar
  251. Oostergreen D, Shvarts E (2000) Russian Zapovedniki in 1998: recent progress and new challenges for Russia’s Strict Nature Preserves. USDA Forest Service Proceedings RMRS-P-14, pp 209–213. http://www.fs.fed.us/rm/pubs/rmrs_p014/rmrs_p014_209_213.pdf. Accessed on 19 Dec 2018
  252. Opdam P, Luque S, Nassauer J, Verburg PH, Wu J (2018) How can landscape ecology contribute to sustainability science? Landsc Ecol 33(1):1–7.  https://doi.org/10.1007/s10980-018-0610-7CrossRefGoogle Scholar
  253. Palmer JF (2019) The contribution of key observation point evaluation to a scientifically rigorous approach to visual impact assessment. Landsc Urban Plann 183:100–110.  https://doi.org/10.1016/j.landurbplan.2018.11.001CrossRefGoogle Scholar
  254. Passarge S (1919) Die Grundlagen der Landschaftskunde. 3 Bände. Vol I, Beschreibende Landschaftskunde, L. Friederichsen & Co. Hamburg, 222 pGoogle Scholar
  255. Pavlov AV (2008) Monitoring of the cryolithic zone (in Russian, Engl subtitles) Novosibirsk, Acad. publisher Geo, 229 p. (Павлов А.В. “Мониторинг криолитозоны” Новосибирск: Академическое издательство «Гео») 2008 г. 229 с), ISBN 978-5-9747-0128-3Google Scholar
  256. PECSRL (2018) Permanent European conference for the study of the rural landscape. http://www.pecsrl.org. Accessed on 19 Dec 2018
  257. Peil T, Jones M (eds) (2005) Landscape, law and justice. Proceedings of a Conference Organised by the Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo 15–19 June 2003. Instituttet for sammenlignende kulturforskning, Serie B, Skrifter CXVIII. Novus forlag, OsloGoogle Scholar
  258. Penning-Rowsell EC (1981) Fluctuating fortunes in gauging landscape value. Prog Hum Geogr 5(1):25–41Google Scholar
  259. Penning-Rowsell EC, Lowenthal D (eds) (1986) Landscape meanings and values. Allen and Unwin, London. 172 p. ISBN 0047100036Google Scholar
  260. Pfister C (2007) Climatic extremes, recurrent crises and witch hunts: strategies of European societies in coping with exogenous shocks in the late sixteenth and early seventeenth centuries. Medieval History J 10(1&2)37, 33–73. http://www.hist.unibe.ch/unibe/portal/fak_historisch/dga/hist/content/e11168/e52524/e69145/e186327/e188624/22_Pfister-Witches-07_ger.pdf. Accessed on 19 Dec 2018
  261. Pinto-Correia T, Primdahl J, Pedroli B (2018) European Landscapes in Transition - Implications for Policy and Practice. Cambridge University Press, 330 ppGoogle Scholar
  262. Pittman SJ (ed) (2018) Seascape ecology, 1st edn. Wiley, 501 ppGoogle Scholar
  263. Plieninger T, Bieling C (2017) The emergence of landscape stewardship in practice, policy and research, pp 10–24. In: Bieling C, Plieninger T (eds) The science and practice of landscape stewardship. Cambridge University Press, Cambridge, 402 p. ISBN: 9781107142268,  https://doi.org/10.1017/9781316499016.002
  264. Plit J, Myga-Piątek U (2014) The degree of landscape openness as a manifestation of cultural metamorphose. Quaestiones Geogra 33(3):145–154. http://geoinfo.amu.edu.pl/qg/archives/2014/QG_33_3_145-154.pdf. Accessed on 19 Dec 2018CrossRefGoogle Scholar
  265. Polis GA, Power ME, Huxel GR (Eds) (2004) Food webs at the landscape level. The University of Chicago press. Chicago and London 2004, 528 p. https://www.press.uchicago.edu/ucp/books/book/chicago/F/bo3631997.html, accessed on Dec 19, 2018
  266. Porteous JD (1990) Landscapes of the mind. Worlds of Sense and metaphor. University of Toronto Press, TorontoCrossRefGoogle Scholar
  267. Poschold P (2017) Geschichte der Kulturlandschaft. Entstehungsursachen und Steuerungsfaktoren der Entwicklung der Kulturlandschaft, Lebensraum- und Artenvielfalt in Mitteleuropa. 2. aktualisierte Auflage, Ulmer Verlag, 320 p. ISBN 978-3-8001-0926-5Google Scholar
  268. Potthoff K (2013) The use of ‘cultural landscape’ in 19th century German geographical literature. Norsk Geografisk Tidsskrift–Norwegian J Geogr 67(1): 49–54CrossRefGoogle Scholar
  269. Pütz T, Kiese R, Wollschläger U, Groh J, Rupp H, Zacharias S, Priesack E, Gerke HH, Gasche R, Bens O, Borg E, Baessler C, Kaiser K, Herbrich M, Munch J-C, Sommer M, Vogel HJ, Vanderborght J, Vereecken H (2016) TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change. Environ Earth Sci 75:1242.  https://doi.org/10.1007/s12665-016-6031-5CrossRefGoogle Scholar
  270. Quast J (2011) Towards an integrated land and water resources management in Brandenburg’s Oderbruch-Havelland Wetland Belt: History and Strategies for the Future. Die Erde 142(1–2):141–162. https://www.die-erde.org/index.php/die-erde/article/view/46/0. Accessed on 19 Dec 2018
  271. Radford SL, Senn J, Kienast F (2019) Indicator-based assessment of wilderness quality in mountain landscapes. Ecol Indic 97:438–446.  https://doi.org/10.1016/j.ecolind.2018.09.054CrossRefGoogle Scholar
  272. Ratzel F (1893) Die Vereinigten Staaten von Nord-Amerika, vol. 2, Politische und Wirtschafts-Geographie, 2nd edn. R. Oldenburg, MünchenGoogle Scholar
  273. Ratzel F (1895-96) Die deutsche Landschaft. Halbmonatshefte der Deutsche Rundschau 4:407–428Google Scholar
  274. Raymond CM, Bieling C, Fagerholm N, Martin-Lopez B, Plieninger T (2016) The farmer as a landscape steward: comparing local understandings of landscape stewardship, landscape values, and land management actions. Ambio 45(2):173–184.  https://doi.org/10.1007/s13280-015-0694-0, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752565/PubMedPubMedCentralCrossRefGoogle Scholar
  275. Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nature Plants 2, Article number: 15221.  https://doi.org/10.1038/nplants.2015.221
  276. Regia C (ed) (2014) Landscape planning and rural development. Key issues and options towards integration. Springer Briefs in Geography 147 p.  https://doi.org/10.1007/978-3-319-05759-0Google Scholar
  277. Reverey F, Ganzert L, Lischeid G, Ulrich A, Premke K, Grossart HP (2018) Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy. Sci Total Environ 627:985–996.  https://doi.org/10.1016/j.scitotenv.2018.01.220CrossRefPubMedPubMedCentralGoogle Scholar
  278. Pontius Jr. RG, Castella J-C, de Nijs T, Duan Z, Fotsing E, Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijanowski B, Verburg P, Veldkamp AT (2018) Lessons and challenges in land change modeling derived from synthesis of cross-case comparisons. Trends in spatial analysis and modelling. In: Behnisch M, Meinel G (eds) Trends in spatial analysis and modelling. Geotechnologies and the environment, vol 19. Springer, Cham, pp 143–164.  https://doi.org/10.1007/978-3-319-52522-8_8Google Scholar
  279. Ritter C (1832) Die Erdkunde von Asien, vol 1, Der Norden und Nord-Osten von Hoch-Asien. Reimer, BerlinGoogle Scholar
  280. Robinson G (2018a) New frontiers in agricultural geography: transformations, food security, land grabs and climate change. Boletin de la Asociacion de Geografos Espanoles (78):1–48. http://dx.doi.org/10.21138/bage.2710
  281. Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P, de Fraiture C, Hatibu N, Unver O, Bird J, Sibanda L, Smith J (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1):4–17.  https://doi.org/10.1007/s13280-016-0793-6CrossRefPubMedPubMedCentralGoogle Scholar
  282. Romanenkov VA, Smith JU, Smith P, Sirotenko OD, Rukhovitch DI, Romanenko IA (2007) Soil organic carbon dynamics of croplands in European Russia: estimates from the ‘‘model of humus balance’. Reg Environ Change 7:93–104.  https://doi.org/10.1007/s10113-007-0031-7CrossRefGoogle Scholar
  283. Römbke J (2018) Monitoring the biological quality of soil based on the structure and functions of soil organism communities (Chap. I/71). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. Vol I Landscapes in the 21th Century: Status Analyses, Basic Processes and Research Concepts. © «FSBI “VNII Agrochemistry» 2018, pp 367–372.  https://doi.org/10.25680/1244.2018.27.50.071, http://vniia-pr.ru/monografii/pdf/tom1-71.pdf. Accessed on 19 Dec 2018
  284. Römbke J, Gardi C, Creamer R, Miko L (2016) Soil biodiversity data: actual and potential use in European and national legislation. Appl Soil Ecol 97:125–133CrossRefGoogle Scholar
  285. Rösch M, Biester H, Bogenrieder a, Eckmeier E, Ehrmann O, Gerlach R, Hall M, Hartkopf-Fröder C, Herrmann L, Kury B, Lechterbeck J, Schier W, Schulz E (2017) Late neolithic agriculture in temperate Europe—a long-term experimental approach. Land 6:11.  https://doi.org/10.3390/land6010011CrossRefGoogle Scholar
  286. Rotshild EV (2014) Infections in nature. Ecological conception. Environ Epidemiol 8(2):7–279 (in Russian) (Ротшильд Е.В. Инфекции в природе. Экологическая концепция. 3-е издание книги// Энвайронментальная эпидемиология, 2014, том 8, № 2, С. 7 – 279.)Google Scholar
  287. Rowntree LB (1996) The cultural landscape concept in American human geography. In: Earle C, Mathewson K, Kenzer MS (eds) Concepts in human geography. Rowman & Littlefield, Lanham, pp 127–159Google Scholar
  288. Rozas-Vásquez D, Fürst C, Geneletti D, Almendra O (2018) Integration of ecosystem services in strategic environmental assessment across spatial planning scales. Land Use Policy 71:303–310.  https://doi.org/10.1016/j.landusepol.2017.12.015CrossRefGoogle Scholar
  289. Ruhovich, O (2018) Methods for forecasting winter wheat crop productivity in the Oka River Basin with the Use of Relief, Climate and Soil Data (Chap. II/10) ( in Russian, Глава II/10: методы прогнозирования урожайности озимой пшеницы в бассейне р. оки с использованием рельефа, климата и почв). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes.Vol. II Understanding and Monitoring Processes in Soils and Water Bodies, pp 51–56.  https://doi.org/10.25680/7431.2018.70.89.107, http://vniia-pr.ru/monografii/pdf/tom2-10.pdf. Accessed on 19 Dec 2018
  290. Saljnikov E, Cakmak D, Muhanbet A, Kresovic M (2014a) Biological indices of soil organic matter in long term fertilization experiment. Zemljiste i Biljka –Soil and Plant 63(2):11–20 http://www.sdpz.rs/images/casopis/2014/ZIB_vol63_no2_2014_pp11-20.pdf. Accessed on 19 Dec 2018
  291. Saljnikov E, Saljnikov A, Rahimgalieva S, Cakmak D, Kresovic M, Mrvic V, Dzhalankuzov T (2014b) Impact of energy saving cultivations on soil parameters in northern Kazakhstan. Energy 77:35–41.  https://doi.org/10.1016/j.energy.2014.03.042CrossRefGoogle Scholar
  292. Sang N, Ode-Sang AA (2015) Review on the state of the art in scenario modelling for environmental management. Swedish Environmental Protection Agency report 6695. Nov. 2015, 275 p. https://www.naturvardsverket.se/Documents/publikationer6400/978-91-620-6695-6.pdf?pid=16935. Accessed on 19 Dec 2018
  293. Saparov A (2014) Strategy of sustainable soil and plant resource management in the Republic of Kazakhstan. In: Mueller L, Saparov A, Lischeid G (eds) Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia. Environmental Science and Engineering. Springer, Cham, pp 611–619.  https://doi.org/10.1007/978-3-319-01017-5_38Google Scholar
  294. Sauer CO (1925) The morphology of landscape. Univ California Publ Geogr 2(2):19–53Google Scholar
  295. Sayer J, Sunderland T, Ghazoul J, Pfund J-L, Sheil D, Meijaard E, Venter M, Boedhihartono AK, Day M, Garcia C, van Oosten C, Buck LE (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. PNAS 110(21):8349–8356.  https://doi.org/10.1073/pnas.1210595110CrossRefGoogle Scholar
  296. Sayer J, Margules C, Bohnet I, Boedhihartono A, Pierce R, Dale A, Andrews K (2015) The role of citizen science in landscape and seascape approaches to integrating conservation and development. Land 4:1200–1212.  https://doi.org/10.3390/land4041200, https://espace.cdu.edu.au/eserv/cdu:58924/Dale_58924.pdfCrossRefGoogle Scholar
  297. Schäffer A, Filser J, Frische T, Gessner M, Köck W, Kratz W, Liess M, Nuppenau E-A, Roß-Nickoll M, Schäfer R, Scheringer M (2018) Der stumme Frühling - Zur Notwendigkeit eines umweltverträglichen Pflanzenschutzes. Diskussion Nr. 16. Nationale Akademie der Wissenschaften - Leopoldina, Halle (Saale). https://www.boeblingen-sindelfingen.greenpeace.de/sites/www.boeblingen-sindelfingen.greenpeace.de/files/2018_diskussionspapier_pflanzenschutzmittel.pdf. Accessed on 19 Dec 2018
  298. Schaller L, Targetti S, Villanueva AJ, Zasada I. Kantelhardt J, Arriaza F, Bal T, Fedrigotti BV, Giray FH, Häfner K, Majewski E, Malak-Rawlikowska A, Nikolov D, Paoli J-C, Piorr A, Rodríguez-Entrena M, Ungaro F, Verburg PH, Viaggi D (2018) Agricultural landscapes, ecosystem services and regional competitiveness - Assessing drivers and mechanisms in nine European case study areas. Land Use Policy Vol 76, July 2018, p 735-745  https://doi.org/10.1016/j.landusepol.2018.03.001CrossRefGoogle Scholar
  299. Schama S (1997) Landscape and memory. Alfred A. Knopf, New YorkGoogle Scholar
  300. Scheller RM (2013) Landscape modeling. Encyclopedia of Biodiversity (Second Edition) 2013:531–538.  https://doi.org/10.1016/B978-0-12-384719-5.00387-7CrossRefGoogle Scholar
  301. Schenk W, Weizenegger S (2006) Cultural landscape management in Europe and Germany. In: Agnoletti M (ed) The conservation of cultural landscapes. Wallingford (CABI), pp 183–196Google Scholar
  302. Schindler U, Müller L, Dannowski R, Barkusky D, Francis G (2010) Long-term measurements to quantify the impact of arable management practices on deep seepage and nitrate leaching. In: Müller F, Baessler C, Schubert H, Klotz S (eds) Long-term ecological research. Springer, Dordrecht, pp 243–252.  https://doi.org/10.1007/978-90-481-8782-9_17CrossRefGoogle Scholar
  303. Schlenstedt J, Brinckmann A, Häfker U, Haubold-Rosar M, Kirmer A, Knoche D, Landeck I, Lorenz A, Rümmler F, Stärke M, Tischew S, Wiedemann D (2014) Rekultivierung. In: Drebenstedt C, Kuyumcu M (eds) Braunkohlensanierung – Grundlagen, Geotechnik, Wasserwirtschaft, Brachflächen, Rekultivierung, Vermarktung. Springer Vieweg, Berlin, Heidelberg, pp 487–578Google Scholar
  304. Schlüter O (1903) Die Siedlungen im nordöstlichen Thüringen. Ein Beispiel für die Behandlung Siedelungsgeographischer Fragen, Costenoble, Berlin, p 453Google Scholar
  305. Schmidt G (1961) Zur Organisation des Meliorationswesens in der DDR. Agrartechnik Heft 11. November 1961, 501–505 (in German) http://440ejournals.uni-hohenheim.de/index.php/de_agrartechnik/article/view/6474. Accessed on 19 Dec 2018
  306. Schnug E, De Kok LJ (eds) (2016) Phosphorus in agriculture: 100% Zero. Dordrecht, 353 p. https://www.springer.com/de/book/9789401776110. Accessed on 19 Dec 2018
  307. Schönbrodt-Stitt S, Conrad C, Dimov D, Ergashev I, Löw F, Morper-Busch L, Muminov S, Ruziev I, Schorcht G, Solodky G, Sorokin A, Sorokin D, Stulina G, Toshpulatov R, Zaitov S, Kitapbayev A, Unger-Shayesteh K (2018) The WUEMoCA tool for monitoring irrigated cropland use and water use efficiency at the landscape level of the Aral Sea basin (Chap. IV/72). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. Vol. IV Optimising Agricultural Landscapes « FSBI “VNII Agrochemistry » 2018, pp 351–356.  https://doi.org/10.25680/9880.2018.75.14.337. http://vniia-pr.ru/monografii/pdf/tom4-72.pdf. accessed on 19 Dec 2018
  308. Schöne T, Zubovich A, Zech C, Illigner J, Sharshebaev A, Mandychev D, Shakirov A, Moldobekov B, Lauterjung J (2018) Water Monitoring in Central Asia – The Central Asian Water Project (CAWa) (Chapter I/13: ). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. Vol I Landscapes in the 21th Century: Status Analyses, Basic Processes and Research Concepts. © « FSBI “VNII Agrochemistry » 2018, pp 90–94.  https://doi.org/10.25680/1757.2018.97.98.009, http://vniia-pr.ru/monografii/pdf/tom1-13.pdf. Accessed on 19 Dec 2018
  309. Schulp CJE, Levers C, Kuemmerle K, Tieskens KF, Verburg PH(2019) Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy Vol 80, January 2019, p 332-344.  https://doi.org/10.1016/j.landusepol.2018.04.030CrossRefGoogle Scholar
  310. Schwarzer M (2014) Von Mondlandschaften zur Vision eines neuen Seenlandes. Der Diskurs über die Gestaltung von Tagebaubrachen in Ostdeutschland, Springer VS, Wiesbaden. https://www.springer.com/la/book/9783658056391. Accessed on 29 Jan 2019CrossRefGoogle Scholar
  311. Selman P (2006) Planning at the landscape scale. Routledge, 213 pGoogle Scholar
  312. Sergunin A (2019) Russian Arctic Cities’ Sustainable Development Strategies, pp 495–511.  https://doi.org/10.4018/978-1-5225-6954-1.ch023. In: Erokhin V, Gao T, Zhang X (eds) Handbook of research on international collaboration, economic development, and sustainability in the Arctic. 703 p.  https://doi.org/10.4018/978-1-5225-6954-1
  313. Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D, Langanke T, Marcotullio P, Munroe DK, Olah B, Simon D (2012) Urban land teleconnections and sustainability. Proc Natl Acad Sci USA 109(20):7687–7692PubMedCrossRefPubMedCentralGoogle Scholar
  314. Setten G, Brown KM, Rørtveit HN (2019) Landscape and social justice. In: Howard P, Thompson I, Waterton E, Atha M (eds) The Routledge companion to landscape studies, 2nd edn. Routledge, Abingdon, pp 418–428Google Scholar
  315. Shaw DJB, Oldfield J (2007) Landscape science: a Russian geographical tradition. Ann Assoc Am Geogr 97(1):111–126. ISSN 0004-5608. https://core.ac.uk/download/pdf/1396599.pdfCrossRefGoogle Scholar
  316. Simensen T, Halvorsen R, Erikstad L (2018) Methods for landscape characterisation and mapping: a systematic review. Land Use Pol 75:557–569.  https://doi.org/10.1016/j.landusepol.2018.04.022CrossRefGoogle Scholar
  317. Sobczyński T, Joniak T (2009) Vertical changeability of physical-chemical features of bottom sediments in three lakes in aspect type of water mixis and intensity of human impact. Pol J Environ Stud 18(6):1091–1097Google Scholar
  318. Spetich MA, Kvashnina AE, Nukhimovskya YD, Rhodes OE Jr (2009) History, administration, goals, values, and long-term data of Russia’’s strictly protected scientific nature reserves. Nat Areas J 29(1):71–78. https://www.srs.fs.usda.gov/pubs/ja/ja_spetich010.pdfCrossRefGoogle Scholar
  319. Stanilovskaya JS (2019) Landslides in permafrost zone of Russia. In: Pradhan S, Vishal V, Singh T (eds) Landslides: theory, practice and modelling. Advances in natural and technological hazards research, vol 50. Springer, Cham,  https://doi.org/10.1007/978-3-319-77377-3_14Google Scholar
  320. Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev 2(1):81–98.  https://doi.org/10.1177/2053019614564785CrossRefGoogle Scholar
  321. Steinmuller HE, Dittmer KM, White JR, Chambers LG (2019) Understanding the fate of soil organic matter in submerging coastal wetland soils: a microcosm approach. Geoderma 337:1267–1277.  https://doi.org/10.1016/j.geoderma.2018.08.020CrossRefGoogle Scholar
  322. Steinweg B, Kerth M (2018) Soils as witnesses of wars: an overview and further research needs (Chap. I/10). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes, vol I Landscapes in the 21th Century: Status Analyses, Basic Processes and Research Concepts. © «FSBI “VNII Agrochemistry» 2018, pp 76–80.  https://doi.org/10.25680/9680.2018.48.98.010
  323. Stenoien C, Nail KR, Zalucki JM, Parry H, Oberhauser KS, Zalucki MP (2018) Monarchs in decline: a collateral landscape-level effect of modern agriculture. Insect Sci 25(4):528–541.  https://doi.org/10.1111/1744-7917.12404CrossRefPubMedPubMedCentralGoogle Scholar
  324. Stenseke M, Jones M (2011) Conclusion: benefits, difficulties, and challenges of participation under the European Landscape Convention. In: Jones M, Stenseke M (eds) The European landscape convention. Challenges of participation. Landscape Series, vol 13. Springer, Dordrecht, pp 295–309Google Scholar
  325. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514.  https://doi.org/10.1111/j.1365-294X.2010.04691.xCrossRefPubMedPubMedCentralGoogle Scholar
  326. Stöven K, Jacobs F, Schnug E (2015) Mikroplastik: Ein selbstverschuldetes Umweltproblem im Plastikzeitalter. Journal für Kulturpflanzen 67(7):241–250Google Scholar
  327. Sumina OI (1998) The taxonomic diversity of quarry vegetation in North-West Siberia and Chukotka. Polar Geogr 22(1):17–55.  https://doi.org/10.1080/10889379809377635CrossRefGoogle Scholar
  328. Sumina OI (edt) (2000) Research on anthropogenic impacts in the Russian Arctic: review and bibliography guide to Russian Arctic science. Arctic Centre of University of Lapland. Rovaniemi.2000. p 8-43Google Scholar
  329. SURE (2018) Society for urban ecology http://www.society-urban-ecology.org/. Accessed on 19 Dec 2018
  330. Svalova V (ed) (2019) Natural hazards and risk research in Russia. Springer Earth and Environmental Science, 399 p.  https://doi.org/10.1007/978-3-319-91833-4Google Scholar
  331. Swart KW (1969) The miracle of the Dutch Republic as seen in the seventeenth century. London: H.K.Lewis & Co Ltd., cited by Appelbaum 2012 http://www.dianamuirappelbaum.com/?p=583#.XB3fmGkxmpo. Accessed on 19 Dec 2018
  332. Sychev VG, Yefremov EN, Romanenkov VA (2016). Monitoring of Soil Fertility (Agroecological Monitoring) In: Novel Methods for Monitoring and Managing Land and Water Resources in Siberia. Springer Water p 541-561, https://link.springer.com/chapter/10.1007/978-3-319-24409-9_24
  333. Tagungsbericht (2015) Famines During the ‘Little Ice Age’ (1300-1800). Socio-natural Entanglements in Premodern Societies, 19.02.2015–20.02.2015 Bielefeld. In: H-Soz-Kult, 25.04.2015, www.hsozkult.de/conferencereport/id/tagungsberichte-5939. Accessed on 19 Dec 2018
  334. Tarolli P, Vanacker V, Middelkoop H, Brown AG (2014) Landscapes in the anthropocene: state of the art and future directions. Anthropocene 6:1–2.  https://doi.org/10.1016/j.ancene.2014.11.003CrossRefGoogle Scholar
  335. Taylor K (2016) The historic urban landscape paradigm and cities as cultural landscapes. Challenging orthodoxy in urban conservation. Landsc Res 41(4):471–480CrossRefGoogle Scholar
  336. Tchebakova NM, Parfenova EI, Soja AJ (2016) Significant Siberian vegetation change is inevitably brought on by the changing climate. In: Novel methods for monitoring and managing land and water resources in Siberia Springer Water, pp 269–285. https://link.springer.com/chapter/10.1007/978-3-319-24409-9_10Google Scholar
  337. Temin P (2002) The golden age of European growth reconsidered. Eur Rev Econ History 6(1):3–22CrossRefGoogle Scholar
  338. TERENO (2018) Terrestrial environmental observatories. http://www.tereno.net/overview-en?set_language=en. Accessed on 19 Dec 2018
  339. Thober S, Kumar R, Wanders N, Marx A, Pan M, Rakovec O, Samaniego L, Sheffield J, Wood EF, Zink M (2018) Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environ Res Lett 13(1):014003.  https://doi.org/10.1088/1748-9326/aa9e35CrossRefGoogle Scholar
  340. Thomas WL (ed) (1956) Man’s role in changing the face of the earth. University of Chicago Press, ChicagoGoogle Scholar
  341. Thomas J (2006) What’s on regarding land consolidation in Europe? In: Shaping the Change. Proceedings of the XXIII FIG Congress, Munich, Germany, October 8–13, 2006, pp 1–16. https://www.fig.net/resources/proceedings/fig_proceedings/fig2006/papers/ts80/ts80_03_thomas_0311.pdf. Accessed on 19 Dec 2018
  342. Thünen JH (1826) Der isolirte Staat in Beziehung auf Landwirthschaft und Nationalökonomie. Hamburg, 1826. (in German) Deutsches Textarchiv http://www.deutschestextarchiv.de/thuenen_staat_1826. Accessed on 19 Dec 2018
  343. Topaj A, Badenko V, Medvedev S, Terleev V (2018) Dynamically adjusted forecasting of agro-landscape productivity using massive computations of crop model in GIS environment (Chap. III/53). In: Sychev VG, Mueller L (eds) Novel methods and results of landscape research in Europe, Central Asia and Siberia. Monograph in 5 Volumes. vol III Landscape Monitoring and Modelling © « FSBI “VNII Agrochemistry » 2018, pp 253–257,  https://doi.org/10.25680/3309.2018.28.99.246, http://vniia-pr.ru/monografii/pdf/tom3-53.pdf. Accessed on 19 Dec 2018
  344. Tregear A, Arfini F, Belletti G, Marescotti A (2007) Regional foods and rural development: the role of product qualification. J Rural Stud 23(1):12–22.  https://doi.org/10.1016/j.jrurstud.2006.09.010CrossRefGoogle Scholar
  345. Trentmann F, Just F (eds) (2006) Food and conflict in Europe in the age of the two world wars. Palgrave Macmillan, 296 p.  https://doi.org/10.1057/9780230597495Google Scholar
  346. Troldborg M, Aalders I, Towers W, Hallett PD, McKenzie BM, Bengough AG, Lilly A, Ball BC, Hough RL (2013) Application of Bayesian Belief Networks to quantify and map areas at risk to soil threats: using soil compaction as an example. Soil Tillage Res 132:56–68CrossRefGoogle Scholar
  347. Troll C (1939) Luftbildforschung und Landeskundige Forschung. Erdkundliches Wissen. Schriftenreihe für Forschung und Praxis, Heft 12, F. Steiner Verlag, WiesbadenGoogle Scholar
  348. Troll C (1971) Landscape ecology (geoecology) and biogeocenology–a terminology study. Geoforum 2(8):43–46CrossRefGoogle Scholar
  349. Trovato MG (2015) E-scape: landscape and refugee influx. Landsc Architect Australia 147:74–79Google Scholar
  350. Trovato MG (2019) A landscape perspective on the impact of Syrian refugees in Lebanon. In: Asgary A ed) Resettlement challenges for displaced populations and refugees. Springer International Publishing AG, part of Springer Nature January 2019, pp 41–64.  https://doi.org/10.1007/978-3-319-92498-4_4Google Scholar
  351. Trovato MG, Ali D, Nicolas J, El Halabi A, El Meouche S (2017) Landscape risk assessment model and decision support system for the protection of the natural and cultural heritage in the eastern mediterranean area. Land 6(4):76.  https://doi.org/10.3390/land6040076CrossRefGoogle Scholar
  352. Tuan Y-F (1974) Topophilia. A study of environmental perception, attitudes, and values. Prentice-Hall, Englewood CliffsGoogle Scholar
  353. Tudor C (2014) An approach to landscape character assessment. October 2014. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/691184/landscape-character-assessment.pdf. Accessed on 19 Dec 2018
  354. Turner II BL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB (eds) (1990) The earth as transformed by human action. Global and regional changes in the biosphere over the last 300 years. Cambridge University Press, CambridgeGoogle Scholar
  355. Tveit M, Ode Å, Fry G (2006) Key concepts in a framework for analysing visual landscape character. Landsc Res 31(3):229–255CrossRefGoogle Scholar
  356. UNISCAPE (2018) European network of universities for the implementation of the European landscape convention. http://www.uniscape.eu/. Accessed on 19 Dec 2018
  357. United Nations (2015) Agenda 2030: sustainable development goals. 17 goals to transform our world https://www.un.org/sustainabledevelopment/. Accessed on 19 Dec 2018
  358. Uskov IB, Uskov AO (2014) Bases for adaptation of agriculture to climate change (reference). Russian Academy of Science, Saint-Petersburg 2014, 384 p. (in Russian: Основы адаптации земледелия к изменениям климата (спавчное издание).Санкт Петербург. 2014г. 384 с.). ISBN 978-5-4469-0469-3Google Scholar
  359. Van der Ploeg R, Schweigert P, Bachmann J (2001) Use and misuse of nitrogen in agriculture: the German story, scientific world journal. 1:737–744. Published online 2001 Oct 30.  https://doi.org/10.1100/tsw.2001.263, PMCID: PMC6084271 PMID: 12805882 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084271/. Accessed on 9 Dec 2018PubMedPubMedCentralCrossRefGoogle Scholar
  360. Van Huylenbroeck G, Vandermeulen V, Mettepenningen E, Verspech A (2007) Multifunctionality of agriculture. A review of definitions, evidence and instruments. Living Rev. Landscape Res 1:3. http://www.livingreviews.org/lrlr-2007-3. Accessed on 19 Dec 2018
  361. Vera FWM (2000) Grazing ecology and forest history. CABI Publishing, Wallingford, UK, p 528CrossRefGoogle Scholar
  362. Vereecken H, Huisman JA, Hendricks Franssen HJ, Brüggemann N, Bogena HR, Kollet S, Javaux M, van der Kruk J, Vanderborght J (2015) Soil hydrology: recent methodological advances, challenges, and perspectives. Water Resour Res 51(4):2616–2633.  https://doi.org/10.1002/2014WR016852CrossRefGoogle Scholar
  363. Victorov AS, Orlov TV, Kapralova VN, Trapeznikova ON, Sadkov SA, Zverev AV (2019) Stochastic modeling of natural lacustrine thermokarst under stable and unstable climate. In: Svalova V (eds) Natural hazards and risk research in Russia. Innovation and discovery in Russian science and engineering. Springer, Cham, pp 241–267.  https://doi.org/10.1007/978-3-319-91833-4_18Google Scholar
  364. Vitikainen A (2004) An overview of land consolidation in Europe. Nordic J Survey Real Estate Res 1:25–44. ftp://fgg.uni-lj.si/Sendable/MFERLAN/ZEMLJISKI%20KATASTER%20II/8_NALOGA/arvo.pdf. Accessed on 19 Dec 2018
  365. Vogel C (1851) Geographische Landschaftsbilder. Handbuch zur Belebung geographischer Wissenschaft für Lehrer und Gebildete überhaupt, Hinrichs, LeipzigGoogle Scholar
  366. Von Bismarck F, Andrich A, Berkner A, Boldorf K, Dallhammer W-D, Drebenstedt C, Freytag K, Kadler A, Meyer H-D, Schlenstedt J, Schmidt R, Strzodka M, Weymanns K-O (2014) Rechtliche, finanzielle und organisatorische Grundlagen. In: C Drebenstedt, M Kuyumcu (eds) Braunkohlensanierung - Grundlagen, Geotechnik, Wasserwirtschaft, Brachflächen, Rekultivierung, Vermarktung. Springer Vieweg, Berlin, Heidelberg, pp 73–129Google Scholar
  367. Walz U, Stein C (2018) Indicator for a monitoring of Germany’s landscape attractiveness. Ecol Ind 94(2):64–73.  https://doi.org/10.1016/j.ecolind.2017.06.052CrossRefGoogle Scholar
  368. WASWAC (2018) World Association of Soil and Water Conservation. http://www.waswac.org/waswac/index.htm. Accessed on 19 Dec 2018
  369. Wende W, Walz U (2019) Landschaft im Wandel. https://www.buergerschaffenwissen.de/projekt/landschaft-im-wandel. Accessed on 29 Jan 2019
  370. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. A review. Sustain Dev 29(4):503–515.  https://doi.org/10.1051/agro/2009004CrossRefGoogle Scholar
  371. Widgren M, Pedersen EA (2011) Agriculture in Sweden: 800 BC–AD 1000. In: Myrdal J, Morell M (ed) The agrarian history of Sweden: from 4000 BC to AD 2000, pp. 46–71. Nordic academic press, Lund. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-57991
  372. Wieland R, Kerkow A, Früh L, Kampen H, Walther D (2017) Automated feature selection for a machine learning approach toward modeling a mosquito distribution. Ecol Modell 352:108–112.  https://doi.org/10.1016/j.ecolmodel.2017.02.029CrossRefGoogle Scholar
  373. Wimmer J (1885) Historische Landschaftskunde. Verlag der Wagner’schen Universitäts-Buchhandlung, InnsbruckGoogle Scholar
  374. Wood PJ, Hannah DM, Sadler JP (eds) (2008) Hydroecology and ecohydrology past, present and future. Wiley, 464 p, ISBN 978-0-470-01017-4Google Scholar
  375. Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc Ecol 28(6):999–1023.  https://doi.org/10.1007/s10980-013-9894-9CrossRefGoogle Scholar
  376. Wylie J (2009) Landscape. In: Gregory D, Johnston R, Pratt G, Watts MJ, Whatmore S (eds) The dictionary of human geography, 5th edn. Wiley-Blackwell, Chichester, pp 409–411Google Scholar
  377. Yadav SK, Babu S, Yadav MK, Singh K, Yadav GS, Pal S (2013) A review of organic farming for sustainable agriculture in Northern India. Int J f Agron 2013, Article ID 718145, 8 p. http://dx.doi.org/10.1155/2013/718145. Accessed on 19 Dec 2018
  378. Yin X, Kersebaum KC, Kollas C, Manevski K, Baby S, Beaudoin N, Öztürk I, Gaiser T, Wu L, Hoffmann MP, Armas-Herrera CM, Charfeddine M, Conradt T, Constantin J, Ewert F, de Cortazar-Atauri IG, Giglio L, Hlavinka P, Hoffmann H, Launay M, Louarn G, Manderscheid R, Mary B, Mirschel W, Nendel C, Pacholski A, Palosuo T, Ripoche-Wachter D, Rötter R, Ruget F, Sharif B, Trnka M, Ventrella D, Weigel H-J, Olesen JE (2017) Performance of process-based models for simulation of grain N in crop rotations across Europe. Agric Syst 154:63–77.  https://doi.org/10.1016/j.agsy.2017.03.005CrossRefGoogle Scholar
  379. Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The anthropocene: a new epoch of geological time? Phil Trans R Soc Lond A 369:835–841CrossRefGoogle Scholar
  380. Zeder MA (2008) Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. PNAS August 19, 2008 105 (33) 11597-11604;  https://doi.org/10.1073/pnas.0801317105CrossRefGoogle Scholar
  381. Zinkina J, Ilyin IV, Korotayev A (2017) The early stages of globalization evolution: networks of diffusion and exchange of domesticates, technologies, and luxury goods. Socionauki. 16(1). https://www.socionauki.ru/journal/articles/875359/
  382. Zonneveld IS (1995) Land ecology. SPB Academic Publishing bv, Amsterdam, p 199Google Scholar
  383. Zoomers A, van Noorloos F, Otsuki K, Steel G, van Westen G (2017) The rush for land in an urbanizing world: from land grabbing toward developing safe, resilient, and sustainable cities and landscapes. World Dev 92:242–252.  https://doi.org/10.1016/j.worlddev.2016.11.016CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lothar Mueller
    • 1
    • 2
    Email author
  • Frank Eulenstein
    • 1
    • 2
    • 9
  • Wilfried Mirschel
    • 1
  • Marc Antrop
    • 3
  • Michael Jones
    • 4
  • Blair M. McKenzie
    • 5
  • Nikolai M. Dronin
    • 6
  • Lev K. Kazakov
    • 6
  • Valery V. Kravchenko
    • 7
  • Alexander V. Khoroshev
    • 6
  • Maria Gerasimova
    • 8
    • 6
  • Ralf Dannowski
    • 1
  • Uwe Schindler
    • 2
    • 9
  • Olga Ruhovich
    • 10
  • Viktor G. Sychev
    • 10
  • Askhad K. Sheudzhen
    • 2
  • Denis Couvet
    • 11
  • Guy M. Robinson
    • 12
    • 13
  • Winfried Blum
    • 14
  • Tomasz Joniak
    • 15
  • Ursula Eisendle
    • 16
  • Maria Gabriella Trovato
    • 17
  • Elmira Salnjikov
    • 18
  • Michael Haubold-Rosar
    • 19
  • Dirk Knoche
    • 19
  • Michael Köhl
    • 20
  • Debbie Bartlett
    • 21
  • Jörg Hoffmann
    • 22
  • Jörg Römbke
    • 23
  • Frank Glante
    • 24
  • Olga I. Sumina
    • 25
  • Abdulla Saparov
    • 26
    • 27
  • Elena Bukvareva
    • 28
  • Vitaly V. Terleev
    • 29
  • Alex G. Topaj
    • 30
  • Felix Kienast
    • 31
  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF)MuenchebergGermany
  2. 2.Kuban State Agrarian UniversityKrasnodarRussia
  3. 3.Landscape Research—Department of GeographyGhent UniversityGhentBelgium
  4. 4.Department of GeographyNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.The James Hutton InstituteDundeeUK
  6. 6.Faculty of GeographyLomonosov Moscow State UniversityMoscowRussia
  7. 7.Sochava Institute for Geography of the Russian Academy of SciencesIrkutskRussia
  8. 8.V.V. Dokuchaev Soil Science InstituteMoscowRussia
  9. 9.Mitscherlich Academy for Soil FertilityPaulinenaueGermany
  10. 10.Pryanishnikov-Institute for AgrochemistryMoscowRussia
  11. 11.UMR MNHN-CNRS-SU ‘CESCO’, 36Paris Cedex 05France
  12. 12.Department of Geography, School of Social SciencesUniversity of AdelaideAdelaideAustralia
  13. 13.Department of Land EconomyUniversity of CambridgeCambridgeUK
  14. 14.Institute of Soil Research, University of Natural Resources and Life SciencesViennaAustria
  15. 15.Department of Water Protection, Faculty of Biology, Institute of Environmental BiologyAdam Mickiewicz University PoznańPoznańPoland
  16. 16.University of SalzburgSalzburgAustria
  17. 17.Department of Landscape Design and Ecosystem Management, Faculty of Agricultural and Food SciencesAmerican University of BeirutBeirutLebanon
  18. 18.Soil Science InstituteBelgradeSerbia
  19. 19.Research Institute for Post-Mining Landscapes (FIB)FinsterwaldeGermany
  20. 20.Universität Hamburg, Center for Earth System Research and Sustainability World ForestryHamburgGermany
  21. 21.Faculty of Engineering and ScienceUniversity of Greenwich, Central AvenueKentUK
  22. 22.Julius Kühn-Institut (JKI) Bundesforschungsinstitut Für Kulturpflanzen, Institut Für Strategien Und Folgenabschätzung, Nachhaltige Landwirtschaft Und BiodiversitätKleinmachnowGermany
  23. 23.ECT Oekotoxikologie GmbHFlörsheimGermany
  24. 24.German Environment AgencyDessau-RosslauGermany
  25. 25.Department of Geobotany and Plant Ecology, Faculty of BiologySt. Petersburg State UniversitySt. PetersburgRussia
  26. 26.Kazakh Research Institute of Soil Science and Agrochemistry Named After U. U. UspanovAlmatyKazakhstan
  27. 27.Research Centre for Ecology and Environment of Central Asia (Almaty)AlmatyKazakhstan
  28. 28.Biodiversity Conservation CenterMoscowRussia
  29. 29.Peter the Great Saint-Petersburg Polytechnic UniversitySt. PetersburgRussia
  30. 30.Agrophysical Research InstituteSt. PetersburgRussia
  31. 31.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations