Current Trends in Landscape Research pp 381-394 | Cite as
A Framework to Connect Biodiversity-Ecosystem Functioning Research to Habitat Fragmentation
Abstract
The relationships between biodiversity and ecosystem functioning (BEF) are one of the key questions in ecological studies especially in the context of the current global decline in biodiversity. However, limited effort has been done to connect BEF relationships to habitat fragmentation while we are living in an age of global habitat fragmentation, especially forest fragmentation. In this chapter, we briefly discussed why such a connection is need. We follow by outlining the major mechanisms by which habitat fragmentation can affect BEF relationships: (i) fragmentation-driven non-random turnover of species, (ii) changes in species–species interactions affecting complementarity potential, and (iii) influences on insurance effects due to changes in environmental conditions and landscape patterns. We highlight the importance of considering spatiotemporal scales in studying BEF relationships. Finally, to promote further research in this area, we present the evidence currently available to science and outline major avenues for future studies.
Keywords
Habitat fragmentation Habitat loss Biodiversity Ecosystem functioning Scales Connectivity Species interactions Species turnoverNotes
Acknowledgements
The work was supported by the European Research Council [PASTFORWARD; grant no. 614839 attributed to KV] and the National Natural Science Foundation of China [grant no. 31361123001]. We thank Jianguo Wu, Maxwell Wilson, and Jinliang Liu for their helpful comments.
References
- Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88. https://doi.org/10.1007/s11284-016-1411-6CrossRefGoogle Scholar
- Baert JM, Janssen CR, Sabbe K, De Laender F (2016) Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions. Nat Commun 7:12486. https://doi.org/10.1038/ncomms12486CrossRefPubMedPubMedCentralGoogle Scholar
- Barry KE, Mommer L, van Ruijven J et al (2018) The future of complementarity: disentangling causes from consequences. Trends Ecol Evol in press. https://doi.org/10.1016/j.tree.2018.10.013CrossRefGoogle Scholar
- Bello C, Galetti M, Pizo MA et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105. https://doi.org/10.1126/sciadv.1501105CrossRefPubMedPubMedCentralGoogle Scholar
- Brinck K, Fischer R, Groeneveld J et al (2017) High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat Commun 8:14855. https://doi.org/10.1038/ncomms14855CrossRefPubMedPubMedCentralGoogle Scholar
- Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philos Trans R Soc B Biol Sci 371:20150267. https://doi.org/10.1098/rstb.2015.0267CrossRefGoogle Scholar
- Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. https://doi.org/10.1038/415426aCrossRefPubMedGoogle Scholar
- Chisholm RA, Muller-Landau HC, Abdul Rahman K et al (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. https://doi.org/10.1111/1365-2745.12132CrossRefGoogle Scholar
- Clarke DA, York PH, Rasheed MA, Northfield TD (2017) Does biodiversity-ecosystem function literature neglect tropical ecosystems? Trends Ecol Evol 32:320–323CrossRefGoogle Scholar
- De Laender F, Rohr JR, Ashauer R et al (2016) Reintroducing environmental change drivers in biodiversity-ecosystem functioning Research. Trends Ecol Evol 31:905–915CrossRefGoogle Scholar
- Ewers RM, Didham RK, Fahrig L et al (2011) A large-scale forest fragmentation experiment: the stability of altered forest ecosystems project. Philos Trans R Soc B Biol Sci 366:3292–3302. https://doi.org/10.1098/rstb.2011.0049CrossRefGoogle Scholar
- Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419CrossRefGoogle Scholar
- Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23. https://doi.org/10.1146/annurev-ecolsys-110316-022612CrossRefGoogle Scholar
- Fanin N, Gundale MJ, Farrell M et al (2018) Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol 2:269–278. https://doi.org/10.1038/s41559-017-0415-0CrossRefPubMedGoogle Scholar
- Ferreira J, Lennox GD, Gardner TA et al (2018) Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat Clim Chang 8:744. https://doi.org/10.1038/s41558-018-0225-7CrossRefGoogle Scholar
- Fontúrbel FE, Candia AB, Malebrán J et al (2015) Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob Chang Biol 21:3951–3960. https://doi.org/10.1111/gcb.13025CrossRefPubMedGoogle Scholar
- France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441:1139–1143. https://doi.org/10.1038/nature04729CrossRefPubMedGoogle Scholar
- Gonzalez A, Mouquet N, Loreau M (2009) Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. Biodiversity, Ecosyst Funct Ecosyst Serv 134–146Google Scholar
- Gounand I, Harvey E, Little CJ, Altermatt F (2018) Meta-ecosystems 2.0: rooting the theory into the field. Trends Ecol Evol 33:36–46. https://doi.org/10.1016/j.tree.2017.10.006CrossRefPubMedGoogle Scholar
- Grace JB, Anderson TM, Seabloom EW et al (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393. https://doi.org/10.1038/nature16524CrossRefPubMedGoogle Scholar
- Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. https://doi.org/10.1126/sciadv.1500052CrossRefPubMedPubMedCentralGoogle Scholar
- Hagen M, Kissling WD, Rasmussen C et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–120. https://doi.org/10.1016/B978-0-12-396992-7.00002-2CrossRefGoogle Scholar
- Hammill E, Hawkins CP, Greig HS et al (2018) Landscape heterogeneity strengthens the relationship between β-diversity and ecosystem function. Ecology 99:2467–2475. https://doi.org/10.1002/ecy.2492CrossRefPubMedGoogle Scholar
- Hertzog LR et al (2019) Forest fragmentation modulates effects of tree species richness and composition on ecosystemmultifunctionality. Ecology. in pressGoogle Scholar
- Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. https://doi.org/10.1890/07-1053.1CrossRefPubMedGoogle Scholar
- Hooper DU, Chapin FS III, Ewel JJ (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. https://doi.org/10.1890/04-0922CrossRefGoogle Scholar
- Huang Y, Chen Y, Castro-Izaguirre N et al (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362(80-):80–83. https://doi.org/10.1126/science.aat6405CrossRefGoogle Scholar
- Isbell F, Reich PB, Tilman D et al (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci U S A 110:11911–11916. https://doi.org/10.1073/pnas.1310880110CrossRefPubMedPubMedCentralGoogle Scholar
- Isbell F, Cowles J, Dee LE et al (2018) Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett 21:763–778. https://doi.org/10.1111/ele.12928CrossRefPubMedPubMedCentralGoogle Scholar
- Jones IL, Bunnefeld N, Jump AS et al (2016) Extinction debt on reservoir land-bridge islands. Biol Conserv 199:75–83. https://doi.org/10.1016/j.biocon.2016.04.036CrossRefGoogle Scholar
- Jucker T, Bouriaud O, Avacaritei D et al (2014) Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. J Ecol 102:1202–1213. https://doi.org/10.1111/1365-2745.12276CrossRefGoogle Scholar
- Jucker T, Avăcăriței D, Bărnoaiea I et al (2016) Climate modulates the effects of tree diversity on forest productivity. J Ecol 104:388–398. https://doi.org/10.1111/1365-2745.12522CrossRefGoogle Scholar
- Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255. https://doi.org/10.1890/0012-9658(2006)87%5b1244:ncfnae%5d2.0.co;2CrossRefGoogle Scholar
- Kardol P, Fanin N, Wardle DA (2018) Long-term effects of species loss on community properties across contrasting ecosystems. Nature 557:710–713. https://doi.org/10.1038/s41586-018-0138-7CrossRefPubMedGoogle Scholar
- Kramer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. https://doi.org/10.1016/j.biocon.2012.03.038CrossRefGoogle Scholar
- Lafortezza R, Coomes DA, Kapos V, Ewers RM (2010) Assessing the impacts of fragmentation on plant communities in New Zealand: Scaling from survey plots to landscapes. Glob Ecol Biogeogr 19:741–754. https://doi.org/10.1111/j.1466-8238.2010.00542.xCrossRefGoogle Scholar
- Lasky JR, Uriarte M, Boukili VK et al (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17:n/a-n/a. https://doi.org/10.1111/ele.12322CrossRefGoogle Scholar
- Laurance WF (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744CrossRefGoogle Scholar
- Laurance WF, Delamônica P, Laurance SG et al (2000) Rainforest fragmentation kills big trees. Nature 404:836. https://doi.org/10.1038/35009032CrossRefPubMedGoogle Scholar
- Laurance WF, Camargo JLC, Fearnside PM et al (2018) An Amazonian rainforest and its fragments as a laboratory of global change. Biol Rev 93:223–247. https://doi.org/10.1111/brv.12343CrossRefPubMedGoogle Scholar
- Legrand D, Guillaume O, Baguette M et al (2012) The Metatron: An experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat Methods 9:828–833. https://doi.org/10.1038/nmeth.2104CrossRefPubMedGoogle Scholar
- Liang J, Zhou M, Tobin PC et al (2015) Biodiversity influences plant productivity through niche–efficiency. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1409853112CrossRefPubMedGoogle Scholar
- Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(80-):aaf8957–aaf8957. https://doi.org/10.1126/science.aaf8957CrossRefGoogle Scholar
- Liu J, Slik JWF (2014) Forest fragment spatial distribution matters for tropical tree conservation. Biol Conserv 171:99–106. https://doi.org/10.1016/j.biocon.2014.01.004CrossRefGoogle Scholar
- Liu J, Coomes DA, Hu G et al (2018a) Larger fragments have more late-successional species of woody plants than smaller fragments after 50 years of secondary succession. J Ecol in press. https://doi.org/10.1111/1365-2745.13071, https://doi.org/10.1111/1365-2745.13071
- Liu J, Wilson M, Hu G et al (2018b) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc Ecol 33:341–352. https://doi.org/10.1007/s10980-018-0620-5CrossRefGoogle Scholar
- Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci U S A 100:12765–12770. https://doi.org/10.1073/pnas.2235465100CrossRefPubMedPubMedCentralGoogle Scholar
- Lutz JA, Furniss TJ, Johnson DJ et al (2018) Global importance of large-diameter trees. Glob. Ecol, BiogeogrCrossRefGoogle Scholar
- Magnago LFS, Edwards DP, Edwards FA et al (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102:475–485. https://doi.org/10.1111/1365-2745.12206CrossRefGoogle Scholar
- Pfeifer M, Lefebvre V, Peres CA et al (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191. https://doi.org/10.1038/nature24457CrossRefPubMedPubMedCentralGoogle Scholar
- Ratcliffe S, Holzwarth F, Nadrowski K et al (2015) Tree neighbourhood matters—tree species composition drives diversity-productivity patterns in a near-natural beech forest. For Ecol Manage 335:225–234. https://doi.org/10.1016/j.foreco.2014.09.032CrossRefGoogle Scholar
- Ratcliffe S, Liebergesell M, Ruiz-Benito P et al (2016) Modes of functional biodiversity control on tree productivity across the European continent. Glob Ecol Biogeogr 25:251–262. https://doi.org/10.1111/geb.12406CrossRefGoogle Scholar
- Ratcliffe S, Wirth C, Jucker T et al (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Lett 20:1414–1426CrossRefGoogle Scholar
- Reich PB, Tilman D, Isbell F et al (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336(80-.):589–592CrossRefGoogle Scholar
- Roscher C, Temperton VM, Scherer-Lorenzen M et al (2005) Overyielding in experimental grassland communities - irrespective of species pool or spatial scale. Ecol Lett 8:419–429. https://doi.org/10.1111/j.1461-0248.2005.00736.xCrossRefGoogle Scholar
- Rusterholz HP, Baur B (2010) Delayed response in a plant-pollinator system to experimental grassland fragmentation. Oecologia 163:141–152. https://doi.org/10.1007/s00442-010-1567-7CrossRefPubMedGoogle Scholar
- Sandel B, Svenning J (2013) Human impacts drive a global topographic signature in tree cover. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3474CrossRefGoogle Scholar
- Slik JWF, Paoli G, Mcguire K et al (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–1271. https://doi.org/10.1111/geb.12092CrossRefGoogle Scholar
- Smith IA, Hutyra LR, Reinmann AB et al (2018) Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front Ecol Environ 16:213–221. https://doi.org/10.1002/fee.1793CrossRefGoogle Scholar
- Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294. https://doi.org/10.1146/annurev.ecolsys.36.102003.152636CrossRefGoogle Scholar
- Staddon P, Lindo Z, Crittenden PD et al (2010) Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol Lett 13:543–552. https://doi.org/10.1111/j.1461-0248.2010.01450.xCrossRefPubMedGoogle Scholar
- Stephenson NL, Das AJ, Condit R et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93. https://doi.org/10.1038/nature12914CrossRefPubMedGoogle Scholar
- Steudel B, Hector A, Friedl T et al (2012) Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett 15:1397–1405. https://doi.org/10.1111/j.1461-0248.2012.01863.xCrossRefPubMedGoogle Scholar
- Taubert F, Fischer R, Groeneveld J et al (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522. https://doi.org/10.1038/nature25508CrossRefPubMedGoogle Scholar
- Terborgh J, Lopez L, Nuñez P et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926. https://doi.org/10.1126/science.1064397CrossRefPubMedGoogle Scholar
- Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography (Cop) 40:98–108. https://doi.org/10.1111/ecog.02558CrossRefGoogle Scholar
- Thompson PL, Isbell F, Loreau M et al (2018) The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc R Soc B Biol Sci 285:20180038. https://doi.org/10.1098/rspb.2018.0038CrossRefGoogle Scholar
- Tilman D, Isbell F, Cowles JM (2013) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:141007174654001. https://doi.org/10.1146/annurev-ecolsys-120213-091917CrossRefGoogle Scholar
- Tobner CM, Paquette A, Gravel D et al (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–647CrossRefGoogle Scholar
- Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548. https://doi.org/10.1890/05-1182CrossRefPubMedGoogle Scholar
- Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J Veg Sci n/a-n/a. https://doi.org/10.1111/jvs.12399CrossRefGoogle Scholar
- Watson JEM, Evans T, Venter O et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2:599–610. https://doi.org/10.1038/s41559-018-0490-xCrossRefPubMedGoogle Scholar
- Weisser WW, Roscher C, Meyer ST et al (2017) Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl Ecol 23:1–73. https://doi.org/10.1016/J.BAAE.2017.06.002CrossRefGoogle Scholar
- Wilson MC, Chen X-Y, Corlett RT et al (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227. https://doi.org/10.1007/s10980-015-0312-3CrossRefGoogle Scholar
- Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466. https://doi.org/10.1086/419172CrossRefGoogle Scholar
- Xu W, Viña A, Kong L et al (2017) Reassessing the conservation status of the giant panda using remote sensing. Nat Ecol Evol 1:1635. https://doi.org/10.1038/s41559-017-0317-1CrossRefPubMedGoogle Scholar