A Framework to Connect Biodiversity-Ecosystem Functioning Research to Habitat Fragmentation

  • Jiajia LiuEmail author
  • Lionel Hertzog
  • Guang Hu
  • Kris Verheyen
  • Mingjian YuEmail author
Part of the Innovations in Landscape Research book series (ILR)


The relationships between biodiversity and ecosystem functioning (BEF) are one of the key questions in ecological studies especially in the context of the current global decline in biodiversity. However, limited effort has been done to connect BEF relationships to habitat fragmentation while we are living in an age of global habitat fragmentation, especially forest fragmentation. In this chapter, we briefly discussed why such a connection is need. We follow by outlining the major mechanisms by which habitat fragmentation can affect BEF relationships: (i) fragmentation-driven non-random turnover of species, (ii) changes in species–species interactions affecting complementarity potential, and (iii) influences on insurance effects due to changes in environmental conditions and landscape patterns. We highlight the importance of considering spatiotemporal scales in studying BEF relationships. Finally, to promote further research in this area, we present the evidence currently available to science and outline major avenues for future studies.


Habitat fragmentation Habitat loss Biodiversity Ecosystem functioning Scales Connectivity Species interactions Species turnover 



The work was supported by the European Research Council [PASTFORWARD; grant no. 614839 attributed to KV] and the National Natural Science Foundation of China [grant no. 31361123001]. We thank Jianguo Wu, Maxwell Wilson, and Jinliang Liu for their helpful comments.


  1. Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2017) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88. Scholar
  2. Baert JM, Janssen CR, Sabbe K, De Laender F (2016) Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions. Nat Commun 7:12486. Scholar
  3. Barry KE, Mommer L, van Ruijven J et al (2018) The future of complementarity: disentangling causes from consequences. Trends Ecol Evol in press. Scholar
  4. Bello C, Galetti M, Pizo MA et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1:e1501105. Scholar
  5. Brinck K, Fischer R, Groeneveld J et al (2017) High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat Commun 8:14855. Scholar
  6. Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philos Trans R Soc B Biol Sci 371:20150267. Scholar
  7. Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. Scholar
  8. Chisholm RA, Muller-Landau HC, Abdul Rahman K et al (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. Scholar
  9. Clarke DA, York PH, Rasheed MA, Northfield TD (2017) Does biodiversity-ecosystem function literature neglect tropical ecosystems? Trends Ecol Evol 32:320–323CrossRefGoogle Scholar
  10. De Laender F, Rohr JR, Ashauer R et al (2016) Reintroducing environmental change drivers in biodiversity-ecosystem functioning Research. Trends Ecol Evol 31:905–915CrossRefGoogle Scholar
  11. Ewers RM, Didham RK, Fahrig L et al (2011) A large-scale forest fragmentation experiment: the stability of altered forest ecosystems project. Philos Trans R Soc B Biol Sci 366:3292–3302. Scholar
  12. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. Scholar
  13. Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23. Scholar
  14. Fanin N, Gundale MJ, Farrell M et al (2018) Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol 2:269–278. Scholar
  15. Ferreira J, Lennox GD, Gardner TA et al (2018) Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat Clim Chang 8:744. Scholar
  16. Fontúrbel FE, Candia AB, Malebrán J et al (2015) Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob Chang Biol 21:3951–3960. Scholar
  17. France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441:1139–1143. Scholar
  18. Gonzalez A, Mouquet N, Loreau M (2009) Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. Biodiversity, Ecosyst Funct Ecosyst Serv 134–146Google Scholar
  19. Gounand I, Harvey E, Little CJ, Altermatt F (2018) Meta-ecosystems 2.0: rooting the theory into the field. Trends Ecol Evol 33:36–46. Scholar
  20. Grace JB, Anderson TM, Seabloom EW et al (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393. Scholar
  21. Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. Scholar
  22. Hagen M, Kissling WD, Rasmussen C et al (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–120. Scholar
  23. Hammill E, Hawkins CP, Greig HS et al (2018) Landscape heterogeneity strengthens the relationship between β-diversity and ecosystem function. Ecology 99:2467–2475. Scholar
  24. Hertzog LR et al (2019) Forest fragmentation modulates effects of tree species richness and composition on ecosystemmultifunctionality. Ecology. in pressGoogle Scholar
  25. Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520. Scholar
  26. Hooper DU, Chapin FS III, Ewel JJ (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. Scholar
  27. Huang Y, Chen Y, Castro-Izaguirre N et al (2018) Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362(80-):80–83. Scholar
  28. Isbell F, Reich PB, Tilman D et al (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci U S A 110:11911–11916. Scholar
  29. Isbell F, Cowles J, Dee LE et al (2018) Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett 21:763–778. Scholar
  30. Jones IL, Bunnefeld N, Jump AS et al (2016) Extinction debt on reservoir land-bridge islands. Biol Conserv 199:75–83. Scholar
  31. Jucker T, Bouriaud O, Avacaritei D et al (2014) Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. J Ecol 102:1202–1213. Scholar
  32. Jucker T, Avăcăriței D, Bărnoaiea I et al (2016) Climate modulates the effects of tree diversity on forest productivity. J Ecol 104:388–398. Scholar
  33. Kahmen A, Renker C, Unsicker SB, Buchmann N (2006) Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–1255.;2CrossRefGoogle Scholar
  34. Kardol P, Fanin N, Wardle DA (2018) Long-term effects of species loss on community properties across contrasting ecosystems. Nature 557:710–713. Scholar
  35. Kramer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. Scholar
  36. Lafortezza R, Coomes DA, Kapos V, Ewers RM (2010) Assessing the impacts of fragmentation on plant communities in New Zealand: Scaling from survey plots to landscapes. Glob Ecol Biogeogr 19:741–754. Scholar
  37. Lasky JR, Uriarte M, Boukili VK et al (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17:n/a-n/a. Scholar
  38. Laurance WF (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744CrossRefGoogle Scholar
  39. Laurance WF, Delamônica P, Laurance SG et al (2000) Rainforest fragmentation kills big trees. Nature 404:836. Scholar
  40. Laurance WF, Camargo JLC, Fearnside PM et al (2018) An Amazonian rainforest and its fragments as a laboratory of global change. Biol Rev 93:223–247. Scholar
  41. Legrand D, Guillaume O, Baguette M et al (2012) The Metatron: An experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat Methods 9:828–833. Scholar
  42. Liang J, Zhou M, Tobin PC et al (2015) Biodiversity influences plant productivity through niche–efficiency. Proc Natl Acad Sci. Scholar
  43. Liang J, Crowther TW, Picard N et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354(80-):aaf8957–aaf8957. Scholar
  44. Liu J, Slik JWF (2014) Forest fragment spatial distribution matters for tropical tree conservation. Biol Conserv 171:99–106. Scholar
  45. Liu J, Coomes DA, Hu G et al (2018a) Larger fragments have more late-successional species of woody plants than smaller fragments after 50 years of secondary succession. J Ecol in press.,
  46. Liu J, Wilson M, Hu G et al (2018b) How does habitat fragmentation affect the biodiversity and ecosystem functioning relationship? Landsc Ecol 33:341–352. Scholar
  47. Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci U S A 100:12765–12770. Scholar
  48. Lutz JA, Furniss TJ, Johnson DJ et al (2018) Global importance of large-diameter trees. Glob. Ecol, BiogeogrCrossRefGoogle Scholar
  49. Magnago LFS, Edwards DP, Edwards FA et al (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102:475–485. Scholar
  50. Pfeifer M, Lefebvre V, Peres CA et al (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551:187–191. Scholar
  51. Ratcliffe S, Holzwarth F, Nadrowski K et al (2015) Tree neighbourhood matters—tree species composition drives diversity-productivity patterns in a near-natural beech forest. For Ecol Manage 335:225–234. Scholar
  52. Ratcliffe S, Liebergesell M, Ruiz-Benito P et al (2016) Modes of functional biodiversity control on tree productivity across the European continent. Glob Ecol Biogeogr 25:251–262. Scholar
  53. Ratcliffe S, Wirth C, Jucker T et al (2017) Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Lett 20:1414–1426CrossRefGoogle Scholar
  54. Reich PB, Tilman D, Isbell F et al (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336(80-.):589–592CrossRefGoogle Scholar
  55. Roscher C, Temperton VM, Scherer-Lorenzen M et al (2005) Overyielding in experimental grassland communities - irrespective of species pool or spatial scale. Ecol Lett 8:419–429. Scholar
  56. Rusterholz HP, Baur B (2010) Delayed response in a plant-pollinator system to experimental grassland fragmentation. Oecologia 163:141–152. Scholar
  57. Sandel B, Svenning J (2013) Human impacts drive a global topographic signature in tree cover. Nat Commun 4:1–7. Scholar
  58. Slik JWF, Paoli G, Mcguire K et al (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob Ecol Biogeogr 22:1261–1271. Scholar
  59. Smith IA, Hutyra LR, Reinmann AB et al (2018) Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front Ecol Environ 16:213–221. Scholar
  60. Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–294. Scholar
  61. Staddon P, Lindo Z, Crittenden PD et al (2010) Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol Lett 13:543–552. Scholar
  62. Stephenson NL, Das AJ, Condit R et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93. Scholar
  63. Steudel B, Hector A, Friedl T et al (2012) Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett 15:1397–1405. Scholar
  64. Taubert F, Fischer R, Groeneveld J et al (2018) Global patterns of tropical forest fragmentation. Nature 554:519–522. Scholar
  65. Terborgh J, Lopez L, Nuñez P et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926. Scholar
  66. Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography (Cop) 40:98–108. Scholar
  67. Thompson PL, Isbell F, Loreau M et al (2018) The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc R Soc B Biol Sci 285:20180038. Scholar
  68. Tilman D, Isbell F, Cowles JM (2013) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:141007174654001. Scholar
  69. Tobner CM, Paquette A, Gravel D et al (2016) Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–647CrossRefGoogle Scholar
  70. Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548. Scholar
  71. Wardle DA (2016) Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J Veg Sci n/a-n/a. Scholar
  72. Watson JEM, Evans T, Venter O et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2:599–610. Scholar
  73. Weisser WW, Roscher C, Meyer ST et al (2017) Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl Ecol 23:1–73. Scholar
  74. Wilson MC, Chen X-Y, Corlett RT et al (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227. Scholar
  75. Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466. Scholar
  76. Xu W, Viña A, Kong L et al (2017) Reassessing the conservation status of the giant panda using remote sensing. Nat Ecol Evol 1:1635. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Forest and Nature LabGhent UniversityMelle-GontrodeBelgium
  2. 2.College of Life SciencesZhejiang UniversityHangzhouChina
  3. 3.School of Civil Engineering and ArchitectureZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations