Advertisement

A Join-Based Hybrid Parameter for Constraint Satisfaction

  • Robert Ganian
  • Sebastian OrdyniakEmail author
  • Stefan Szeider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11802)

Abstract

We propose joinwidth, a new complexity parameter for the Constraint Satisfaction Problem (CSP). The definition of joinwidth is based on the arrangement of basic operations on relations (joins, projections, and pruning), which inherently reflects the steps required to solve the instance. We use joinwidth to obtain polynomial-time algorithms (if a corresponding decomposition is provided in the input) as well as fixed-parameter algorithms (if no such decomposition is provided) for solving the CSP.

Joinwidth is a hybrid parameter, as it takes both the graphical structure as well as the constraint relations that appear in the instance into account. It has, therefore, the potential to capture larger classes of tractable instances than purely structural parameters like hypertree width and the more general fractional hypertree width (fhtw). Indeed, we show that any class of instances of bounded fhtw also has bounded joinwidth, and that there exist classes of instances of bounded joinwidth and unbounded fhtw, so bounded joinwidth properly generalizes bounded fhtw. We further show that bounded joinwidth also properly generalizes several other known hybrid restrictions, such as fhtw with degree constraints and functional dependencies. In this sense, bounded joinwidth can be seen as a unifying principle that explains the tractability of several seemingly unrelated classes of CSP instances.

References

  1. 1.
    Ahmed, R., Sen, R., Poess, M., Chakkappen, S.: Of snowstorms and bushy trees. Proc. VLDB Endowment 7(13), 1452–1461 (2014)CrossRefGoogle Scholar
  2. 2.
    Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tautologies. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 593–603 (2002)Google Scholar
  3. 3.
    Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins. SIAM J. Comput. 42(4), 1737–1767 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cohen, D.A., Cooper, M.C., Green, M.J., Marx, D.: On guaranteeing polynomially bounded search tree size. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 160–171. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23786-7_14CrossRefGoogle Scholar
  6. 6.
    Cohen, D.A., Cooper, M.C., Jeavons, P.G., Zivny, S.: Binary constraint satisfaction problems defined by excluded topological minors. Inf. Comput. 264, 12–31 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cooper, M.C., Duchein, A., El Mouelhi, A., Escamocher, G., Terrioux, C., Zanuttini, B.: Broken triangles: From value merging to a tractable class of general-arity constraint satisfaction problems. Artif. Intell. 234, 196–218 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cooper, M.C., Zivny, S.: Hybrid tractable classes of constraint problems. In: The Constraint Satisfaction Problem, volume 7 of Dagstuhl Follow-Ups, pp. 113–135. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  9. 9.
    David, P.: Using pivot consistency to decompose and solve functional CSPs. J. Artif. Intell. Res. 2, 447–474 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Deville, Y., Van Hentenryck, P.: An efficient arc consistency algorithm for a class of CSP problems. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sydney, Australia, pp. 325–330, 24–30 August 1991Google Scholar
  11. 11.
    Diestel, R.: Graph Theory: GTM, 4th edn., vol. 173. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-53622-3zbMATHCrossRefGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5559-1zbMATHCrossRefGoogle Scholar
  13. 13.
    Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions: hard and easy cases. In: Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, pp. 17–32. ACM, 10–15 June 2018Google Scholar
  14. 14.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science, vol. XIV. An EATCS Series. Springer, Berlin (2006).  https://doi.org/10.1007/3-540-29953-X
  15. 15.
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems. Comput. J. 51(3), 303–325 (2006)CrossRefGoogle Scholar
  17. 17.
    Grohe, M.: Parameterized complexity for the database theorist. SIGMOD Rec. 31(4), 86–96 (2002)CrossRefGoogle Scholar
  18. 18.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1–24 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Grohe, M.: Logic, graphs, and algorithms. In: Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2, pp. 357–422. Amsterdam University Press (2007)Google Scholar
  20. 20.
    Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Algorithms 11(1), 4:1–4:20 (2014). http://doi.acm.org/10.1145/2636918
  21. 21.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Ioannidis, Y.E., Kang, Y.C.: Left-deep vs. bushy trees: an analysis of strategy spaces and its implications for query optimization. In: Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data, pp. 168–177. ACM Press (1991)Google Scholar
  23. 23.
    Khamis, M.A., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, pp. 3–28. ACM, 26 June–01 July 2016Google Scholar
  24. 24.
    Khamis, M.A., Ngo, H.Q., Suciu, D.: What do Shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, pp. 429–444. ACM, 14–19 May 2017Google Scholar
  25. 25.
    Marx, D.: Approximating fractional hypertree width. ACM Trans. Algorithms 6(2), 17 (2010). Art. 29MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Marx, D.: Tractable structures for constraint satisfaction with truth tables. Theory Comput. Syst. 48(3), 444–464 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM 60(6), 42:1–42:51 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Naanaa, W.: Unifying and extending hybrid tractable classes of csps. J. Exp. Theor. Artif. Intell. 25(4), 407–424 (2013)CrossRefGoogle Scholar
  29. 29.
    Robertson, N., Seymour, P.D.: Graph minors. I. excluding a forest. J. Combin. Theory Ser. B 35(1), 39–61 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier, New York (2006)zbMATHGoogle Scholar
  32. 32.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Yannakakis, M.: Algorithms for acyclic database schemes. In: Proceedings of 7th International Conference Very Large Data Bases, Cannes, France, pp. 81–94. IEEE Computer Society, 9–11 September 1981Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert Ganian
    • 1
  • Sebastian Ordyniak
    • 2
    Email author
  • Stefan Szeider
    • 1
  1. 1.Algorithms and Complexity GroupTU WienViennaAustria
  2. 2.Algorithms GroupUniversity of SheffieldSheffieldUK

Personalised recommendations