Projection-Based Measurement and Identification

  • Clément JailinEmail author
  • Ante Buljac
  • Amine Bouterf
  • François Hild
  • Stéphane Roux
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


A recently developed Projection-based Digital Image Correlation (P-DVC) method is here extended to 4D (space and time) displacement field measurement and mechanical identification based on a single radiograph per loading step instead of volumes as in standard DVC methods. Two levels of data reductions are exploited, namely, reduction of the data acquisition (and time) by a factor of 1000 and reduction of the solution space by exploiting model reduction techniques. The analysis of a complete tensile elastoplastic test composed of 127 loading steps performed in 6 min is presented. The 4D displacement field as well as the elastoplastic constitutive law are identified.


Image-based identification Model reduction Fast 4D identification In-situ tomography measurements 



This work has benefited from the support of the French “Agence Nationale de la Recherche” through the “Investissements d’avenir” Program under the reference ANR-10-EQPX-37 MATMECA, and ANR-14-CE07-0034-02 COMINSIDE.


  1. 1.
    Maire, E., Buffière, J. Y., Salvo, L., Blandin, J. J., Ludwig, W., & Létang, J. M. (2001). On the application of X-ray microtomography in the field of materials science. Advanced Engineering Materials, 3(8), 539–546.CrossRefGoogle Scholar
  2. 2.
    Maire, E., Le Bourlot, C., Adrien, J., Mortensen, A., & Mokso, R. (2016). 20 Hz X-raytomography during an in situ tensile test. International Journal of Fracture, 200(1), 3–12.CrossRefGoogle Scholar
  3. 3.
    Bay, B. K., Smith, T. S., Fyhrie, D. P., & Saad, M. (1999). Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Experimental Mechanics, 39(3), 217–226.CrossRefGoogle Scholar
  4. 4.
    Hild, F., Bouterf, A., Chamoin, L., Leclerc, H., Mathieu, F., Neggers, J., Pled, F., Tomičević, Z., & Roux, S. (2016). Toward 4D mechanical correlation. Advanced Modeling and Simulation in Engineering Sciences, 3, 17.CrossRefGoogle Scholar
  5. 5.
    Taillandier-Thomas, T., Roux, S., & Hild, F. (2016). A soft route toward 4D tomography. Physical Review Letters, 117, 025501.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jailin, C., Bouterf, A., Poncelet, M., & Roux, S. (2017). In situ μ-CT-scan mechanical tests: Fast 4D mechanical identification. Experimental Mechanics, 57, 1327–1340.CrossRefGoogle Scholar
  7. 7.
    Leclerc, H., Roux, S., & Hild, F. (2015). Projection savings in CT-based digital volume correlation. Experimental Mechanics, 55(1), 275–287.CrossRefGoogle Scholar
  8. 8.
    Roux, S., Hild, F., Viot, P., & Bernard, D. (2008). Three-dimensional image correlation from X-ray computed tomography of solid foam. Composites Part A: Applied Science and Manufacturing, 39(8), 1253–1265.CrossRefGoogle Scholar
  9. 9.
    Passieux, J. C., & Périé, J. N. (2012). High resolution digital image correlation using proper generalized decomposition: PGD-DIC. International Journal for Numerical Methods in Engineering, 92, 531–550.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gomes Perini, L. A., Passieux, J. C., & Périé, J. N. (2014). A multigrid PGD-based algorithm for volumetric displacement fields measurements. Strain, 50, 355–367.CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2020

Authors and Affiliations

  • Clément Jailin
    • 1
    • 2
    Email author
  • Ante Buljac
    • 1
  • Amine Bouterf
    • 1
  • François Hild
    • 1
  • Stéphane Roux
    • 1
  1. 1.LMT (ENS Paris-Saclay/CNRS/Univ.Paris-Saclay)CachanFrance
  2. 2.Safran Aircraft Engines—SAERond-Point René RavaudRéauFrance

Personalised recommendations