Generic Traceable Proxy Re-encryption and Accountable Extension in Consensus Network

  • Hui Guo
  • Zhenfeng Zhang
  • Jing XuEmail author
  • Mingyuan Xia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11735)


Proxy re-encryption provides a promising solution to share encrypted data in consensus network. When the data owner is going to share her encrypted data with some receiver, he will generate re-encryption key for this receiver and distribute the key among the consensus network nodes following some rules. By using the re-encryption key, the nodes can transform the ciphertexts for the receiver without learning anything about the underlying plaintexts. However, if malicious nodes and receivers collude, they can obtain the capability to decrypt all transformable ciphertexts of the data owner, especially for multi-nodes setting of consensus network. In order to address this problem, some “tracing mechanisms” are naturally required to identify misbehaving nodes and foster accountability when the re-encryption key is abused for distributing the decryption capability.

In this paper, we propose a generic traceable proxy re-encryption construction from any proxy re-encryption scheme, with the twice size ciphertext as the underlying proxy re-encryption scheme. Then our construction can be instantiated properly to yield the first traceable proxy re-encryption with constant size ciphertext, which greatly reduces both the communication and storage costs in consensus network. Furthermore, we show how to generate an undeniable proof for node’s misbehavior and support accountability to any proxy re-encryption scheme. Our construction is the first traceable proxy re-encryption scheme with accountability, which is desirable in consensus network so that malicious node can be traced and cannot deny his leakage of re-encryption capabilities.


Proxy re-encryption Traceability Accountability Consensus network 



This work is supported by the National Key R&D Program of China (Grant Nos 2018YFB0804105, 2017YFB0802500), the National Natural Science Foundation of China (Grant Nos 61802021, U1536205, 61572485) and the Opening Project of Guangdong Provincial Key Laboratory of Data Security and Privacy Protection (Grant No. 2017B030301004).


  1. 1.
  2. 2.
    Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006). Scholar
  3. 3.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS (2005)Google Scholar
  4. 4.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). Scholar
  5. 5.
    Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Proceedings of the 15th ACM conference on Computer and communications security, pp. 501–510. ACM (2008)Google Scholar
  6. 6.
    Borcea, C., Polyakov, Y., Rohloff, K., Ryan, G., et al.: Picador: end-to-end encrypted publish-subscribe information distribution with proxy re-encryption. Future Gener. Comput. Syst. 71, 177–191 (2017)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Proceedings of the 14th ACM conference on Computer and communications security, pp. 185–194. ACM (2007)Google Scholar
  8. 8.
    Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption, functional re-encryption, and multi-hop re-encryption: a framework for achieving obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). Scholar
  9. 9.
    Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421. Springer, Heidelberg (2012). Scholar
  10. 10.
    Cohen, A.: What about Bob? the inadequacy of CPA security for proxy reencryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 287–316. Springer, Cham (2019). Scholar
  11. 11.
    Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revisiting proxy re-encryption: forward secrecy, improved security, and applications. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer, Cham (2018). Scholar
  12. 12.
    Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 317–346. Springer, Cham (2019). Scholar
  13. 13.
    Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007). Scholar
  14. 14.
    Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-based encryption. In: Proceedings of the 15th ACM conference on Computer and communications security, pp. 427–436. ACM (2008)Google Scholar
  15. 15.
    Guo, H., Zhang, Z., Xu, J., An, N.: Non-transferable proxy re-encryption. Comput. J. 62(4), 490–506 (2019). Scholar
  16. 16.
    Guo, H., Zhang, Z., Xu, J., An, N., Lan, X.: Accountable proxy re-encryption for secure data sharing. IEEE Trans. Dependable Secure Comput. (2018)Google Scholar
  17. 17.
    Guo, H., Zhang, Z., Zhang, J.: Proxy re-encryption with unforgeable re-encryption keys. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 20–33. Springer, Cham (2014). Scholar
  18. 18.
    Hayashi, R., Matsushita, T., Yoshida, T., Fujii, Y., Okada, K.: Unforgeability of re-encryption keys against collusion attack in proxy re-encryption. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 210–229. Springer, Heidelberg (2011). Scholar
  19. 19.
    Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007). Scholar
  20. 20.
    Kiayias, A., Tang, Q.: Making any identity-based encryption accountable, efficiently. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 326–346. Springer, Cham (2015). Scholar
  21. 21.
    Lai, J., Deng, R.H., Zhao, Y., Weng, J.: Accountable authority identity-based encryption with public traceability. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 326–342. Springer, Heidelberg (2013). Scholar
  22. 22.
    Lai, J., Tang, Q.: Making any attribute-based encryption accountable, efficiently. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 527–547. Springer, Cham (2018). Scholar
  23. 23.
    Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–353. Springer, Heidelberg (2008). Scholar
  24. 24.
    Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008). Scholar
  25. 25.
    Libert, B., Vergnaud, D.: Towards black-box accountable authority IBE with short ciphertexts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 235–255. Springer, Heidelberg (2009). Scholar
  26. 26.
    Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation and key rotation. Technical report, Cryptology ePrint Archive, Report 2017/833 (2017)Google Scholar
  27. 27.
    Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 157–178. Springer, Cham (2018). Scholar
  28. 28.
    Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy attribute-based encryption with white-box traceability and public auditing in the cloud. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 270–289. Springer, Cham (2015). Scholar
  29. 29.
    Pehlivanoglu, S.: An asymmetric fingerprinting code for collusion-resistant buyer-seller watermarking. In: Proceedings of the first ACM workshop on Information hiding and multimedia security, pp. 35–44. ACM (2013)Google Scholar
  30. 30.
    Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996). Scholar
  31. 31.
    Sahai, A., Seyalioglu, H.: Fully Secure accountable-authority identity-based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 296–316. Springer, Heidelberg (2011). Scholar
  32. 32.
    Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a secure and interoperable drm architecture. In: Proceedings of the ACM workshop on Digital rights management, pp. 69–78. ACM (2006)Google Scholar
  33. 33.
    Tang, Q.: Type-based proxy re-encryption and its construction. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 130–144. Springer, Heidelberg (2008). Scholar
  34. 34.
    Weng, J., Chen, M., Yang, Y., Deng, R., Chen, K., Bao, F.: CCA-secure unidirectional proxy re-encryption in the adaptive corruption model without random oracles. Sci. China Inf. Sci. 53(3), 593–606 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Xu, P., Xu, J., Wang, W., Jin, H., Susilo, W., Zou, D.: Generally hybrid proxy re-encryption: a secure data sharing among cryptographic clouds. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 913–918. ACM (2016)Google Scholar
  36. 36.
    Zhang, J., Zhang, Z., Chen, Y.: PRE: Stronger security notions and efficient construction with non-interactive opening. In: Theoretical Computer Science (2014)Google Scholar
  37. 37.
    Zhang, J., Zhang, Z., Guo, H.: Towards secure data distribution systems in mobile cloud computing. IEEE Trans. Mob. Comput. 16(11), 3222–3235 (2017)CrossRefGoogle Scholar
  38. 38.
    Zhang, Y., Li, J., Zheng, D., Chen, X., Li, H.: Accountable large-universe attribute-based encryption supporting any monotone access structures. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 509–524. Springer, Cham (2016). Scholar
  39. 39.
    Zuo, C., Shao, J., Liu, J.K., Wei, G., Ling, Y.: Fine-grained two-factor protection mechanism for data sharing in cloud storage. IEEE Trans. Inf. Forensics Secur. 13(1), 186–196 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hui Guo
    • 1
    • 2
  • Zhenfeng Zhang
    • 3
  • Jing Xu
    • 3
    Email author
  • Mingyuan Xia
    • 4
  1. 1.State Key Laboratory of CryptologyBeijingChina
  2. 2.Guangdong Provincial Key Laboratory of Data Security and Privacy ProtectionGuangzhouPeople’s Republic of China
  3. 3.Institute of Software, Chinese Academy of SciencesBeijingChina
  4. 4.Statistics DepartmentTianjin University of Finance and EconomicsTianjin CityChina

Personalised recommendations