Advertisement

Shock Waves in Hyperbolic Systems of Nonequilibrium Thermodynamics

  • Tommaso RuggeriEmail author
  • Shigeru Taniguchi
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 6)

Abstract

We present the state of the art of the mathematical theory of shock waves for hyperbolic systems. We start with a brief review of ideal shock waves discussing, in particular, the Riemann problem and the phase transition induced by shock waves in real gases. Then we consider dissipative systems and summarise the results concerning the behaviour of the shock thickness for increasing Mach number . In the last part, we present the framework of Rational Extended Thermodynamics theory of nonequilibrium rarefied gas and its theoretical predictions of shock waves in cases of both monatomic and polyatomic gases. Particular emphasis will be given to subshock formation and the related open problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by National Group of Mathematical Physics GNFM-INdAM (TR) and by JSPS KAKENHI Grant Number JP16K17555 (ST).

References

  1. Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497–513 (1976). https://doi.org/10.1017/s0022112076001912 CrossRefGoogle Scholar
  2. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Continuum Mech. Thermodyn. 24, 271–292 (2011). https://doi.org/10.1007/s00161-011-0213-x zbMATHCrossRefGoogle Scholar
  3. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012). https://doi.org/10.1016/j.physleta.2012.08.030 MathSciNetzbMATHCrossRefGoogle Scholar
  4. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013). https://doi.org/10.1016/j.physleta.2013.06.035 MathSciNetzbMATHCrossRefGoogle Scholar
  5. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140 (2014). https://doi.org/10.1016/j.aop.2014.03.011 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Nonlinear extended thermodynamics of real gases with 6 fields, Int. J. Non-Linear Mech. 72, 6–15 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.02.005 zbMATHCrossRefGoogle Scholar
  7. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments. Ann. Phys. 372, 83–109 (2016). (2016). https://doi.org/10.1016/j.aop.2016.04.015 MathSciNetzbMATHCrossRefGoogle Scholar
  8. Artale, V., Conforto, F., Martalò, G., Ricciardello, A.: Shock structure and multiple subshocks in Grad 10-moment binary mixtures of monatomic gases. Ricerche di Matematica (2018). https://doi.org/10.1007/s11587-018-0421-9(2018)
  9. Belonoshko, A. B.: Atomistic simulation of shock wave-induced melting in argon. Science 275, 955–957 (1997).  https://doi.org/10.1126/science.275.5302.955 CrossRefGoogle Scholar
  10. Becker, R.: Stoßwelle und Detonation. Z. f. Physik 8, 321 (1922). https://doi.org/10.1007/bf01329605 CrossRefGoogle Scholar
  11. Berezovski, A., Engelbrecht, J., Maugin, G.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008). https://doi.org/10.1142/6931
  12. Bethe, H.A., Teller, E.: Deviations from Thermal Equilibrium in Shock Waves. (No. NP-4898; BRL-X-117). Engineering Research Institute, University of Michigan (1953). https://doi.org/10.2172/4420349
  13. Bhatia, A.B.: Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids, and Solids. Dover, New York (1985)Google Scholar
  14. Bird, G.A.: Aspects of the structure of strong shock waves. Phys. Fluids 13, 1172 (1970). https://doi.org/10.1063/1.1693047 CrossRefGoogle Scholar
  15. Bisi, M., Martalò, G., Spiga, G.: Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixtures, Acta Appl. Math. 132, 95–105 (2014). https://doi.org/10.1007/s10440-014-9939-3 MathSciNetzbMATHCrossRefGoogle Scholar
  16. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions, Arch. Rational Mech. Anal. 137, 305–320 (1997). https://doi.org/10.1007/s002050050030 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Continuum Mech. Thermodyn. 9(4), 205–212 (1997). https://doi.org/10.1007/s001610050066 MathSciNetzbMATHCrossRefGoogle Scholar
  18. Boillat, G., Ruggeri, T.: On the Shock Structure Problem for Hyperbolic System of Balance Laws and Convex Entropy. Continuum Mech. Thermodyn. 10, 285–292 (1998). https://doi.org/10.1007/s001610050094 MathSciNetzbMATHCrossRefGoogle Scholar
  19. Boness, D.A.: Shock Wave Experiments and Electronic Band-Structure Calculations of Materials at High Temperature and Pressure, Ph.D. Thesis, University of Washington (1991)Google Scholar
  20. Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys. 18, 405–420 (1975). https://doi.org/10.1016/0021-9991(75)90094-7 CrossRefGoogle Scholar
  21. Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann’s theorem, Eur. J. Mech. B/Fluids 13, 237–254 (1994)MathSciNetzbMATHGoogle Scholar
  22. Brini, F., Ruggeri, T.: The Riemann problem for a binary non-reacting mixture of Euler fluids. In: Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T. (eds.): Proceedings WASCOM 2003, pp. 102–108. World Scientific, Singapore (2004). https://doi.org/10.1142/9789812702937_0013 Google Scholar
  23. Brini, F., Ruggeri, T.: On the Riemann problem in extended thermodynamics, In: Proceedings of the 10th International Conference on Hyperbolic Problems (HYP2004), Osaka, 13–17 Sept. 2004, vol. I, pp. 319–326. Yokohama Publisher Inc., Yokohama (2006a)Google Scholar
  24. Brini, F., Ruggeri, T.: On the Riemann problem with structure in extended thermodynamics. Suppl. Rend. Circ. Mat. Palermo II 78, 31–43 (2006b)MathSciNetzbMATHGoogle Scholar
  25. Chaussy, C.G., Eisenberger F., Forssmann, B.: Extracorporeal shockwave lithotripsy (ESWL): a chronology. J. Endourology, 21, 1249–1253 (2007).  https://doi.org/10.1089/end.2007.9880 CrossRefGoogle Scholar
  26. Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids. Ricerche di Matematica 66, 221–231 (2017). https://doi.org/10.1007/s11587-016-0299-3 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Dafermos, C.: Conservation Laws in Continuum Physics, 2nd ed., Springer Verlag, Berlin (2005). https://doi.org/10.1007/3-540-29089-3 zbMATHCrossRefGoogle Scholar
  28. Dai, C. , Jin, X., Zhou, X., Liu, J., Hu, J.: Sound velocity variations and melting of vanadium under shock compression. J. Phys. D Appl. Phys. 34, 3064–3070 (2001). https://doi.org/10.1088/0022-3727/34/20/310 CrossRefGoogle Scholar
  29. Foch, J.D.: On higher order hydrodynamic theories of shock structure, Acta Physica Austriaca, suppl. 10, 123–140 (1973). https://doi.org/10.1007/978-3-7091-8336-6_7 CrossRefGoogle Scholar
  30. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal. 2, 617–642 (1953).  https://doi.org/10.1512/iumj.1953.2.52031 MathSciNetzbMATHGoogle Scholar
  31. Grad, H.: On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2(4) 331–407 (1949).  https://doi.org/10.1002/cpa.3160020403 MathSciNetzbMATHCrossRefGoogle Scholar
  32. Griffith, W.C., Bleakney, W.: Shock waves in gases. Am. J. Phys. 22, 597–612 (1954). https://doi.org/10.1119/1.1933855 CrossRefGoogle Scholar
  33. Griffith, W.C., Kenny, A.: On fully-dispersed shock waves in carbon dioxide, J. Fluid Mech. 3, 286–288 (1957). https://doi.org/10.1017/s0022112057000658 CrossRefGoogle Scholar
  34. Griffith, W., Brickl, D., Blackman, V.: Structure of shock waves in polyatomic gases. Phys. Rev. 102, 1209–1216 (1956).  https://doi.org/10.1103/physrev.102.1209 CrossRefGoogle Scholar
  35. Herman, J.W., Elsayed-Ali, H.E.: Superheating of Pb (111). Phys. Rev. Lett. 69, 1228–1231 (1992).  https://doi.org/10.1103/physrevlett.69.1228 CrossRefGoogle Scholar
  36. Herzfeld, K.F., Litovitz, T.A.: Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York (1959)Google Scholar
  37. Hixson R.S., Fritz, J.N.: Acoustic velocities and phase transitions in molybdenum under strong shock compression. Phys. Rev. Lett. 62, 637–640 (1989).  https://doi.org/10.1103/physrevlett.62.637 CrossRefGoogle Scholar
  38. Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J. Rat. Mech. Anal. 5, 1–54 (1956).  https://doi.org/10.1512/iumj.1956.5.55001 MathSciNetzbMATHGoogle Scholar
  39. Jeong, J. W., Lee I., and Chang, K. J.: Molecular-dynamics study of melting on the shock Hugoniot of Al. Phys. Rev. B 59, 329–333 (1999).  https://doi.org/10.1103/physrevb.59.329 CrossRefGoogle Scholar
  40. Jeong, J.W., Chang, K.J.: Molecular-dynamics simulations for the shock Hugoniot meltings of Cu, Pd and Pt. J. Phys. Condens. Matter 11, 3799–3806 (1999). https://doi.org/10.1088/0953-8984/11/19/302 CrossRefGoogle Scholar
  41. Johannesen, N. H., Zienkiewicz, H.K., Blythe, P.A., Gerrard, J.H.: Experimental and theoretical analysis of vibrational relaxation regions in carbon dioxide. J. Fluid Mech. 13, 213–224 (1962). https://doi.org/10.1017/s0022112062000634 CrossRefGoogle Scholar
  42. Kawashima, S.: Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburgh 106A, 169–194 (1987). https://doi.org/10.1017/s0308210500018308 MathSciNetzbMATHCrossRefGoogle Scholar
  43. Kosuge, S., Aoki, K., Goto, T.: Shock wave structure in polyatomic gases: Numerical analysis using a model Boltzmann equation. AIP Conference Proceedings, vol. 1789, 180004 (2016). https://doi.org/10.1063/1.4967673
  44. Kosuge, S., Aoki, K.: Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3, 023401 (2018).  https://doi.org/10.1103/physrevfluids.3.023401 CrossRefGoogle Scholar
  45. Krehl, P.O.K.: History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-30421-0
  46. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS-NSF, Regional Conference Series in Applied Mathematics 11, SIAM (1973). https://doi.org/10.1137/1.9781611970562
  47. Lighthill, M.J., Whitham, G.B.: On kinematic waves: II. A theory of traffic on long crowded roads. Proc. Roy. Soc. A 229, 317–345 (1955).  https://doi.org/10.1098/rspa.1955.0089 zbMATHGoogle Scholar
  48. Liotta, S.F., Romano, V., Russo, G.: Central scheme for balance laws of relaxation type. SIAM J. Numer. Anal. 38, 1337–1356 (2000). https://doi.org/10.1137/s0036142999363061 MathSciNetzbMATHCrossRefGoogle Scholar
  49. Liu, T.-P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53, 78–88 (1976). https://doi.org/10.1016/0022-247x(76)90146-3 MathSciNetzbMATHCrossRefGoogle Scholar
  50. Liu, T.-P.: Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws. Comm. Pure Appl. Math. 30, 767–796 (1977).  https://doi.org/10.1002/cpa.3160300605 MathSciNetzbMATHCrossRefGoogle Scholar
  51. Liu, T.-P.: Large-time behavior of solutions of initial and initial-boundary value problems of a general system of hyperbolic conservation laws. Commun. Math. Phys. 55, 163–177 (1977). https://doi.org/10.1007/bf01626518 MathSciNetzbMATHCrossRefGoogle Scholar
  52. Liu, T.-P.: Admissible solutions of hyperbolic conservation laws. Mem. Am. Math. Soc. 240, (1981).  https://doi.org/10.1090/memo/0240 MathSciNetCrossRefGoogle Scholar
  53. Liu, T.-P.: Nonlinear hyperbolic-dissipative partial differential equations. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, vol. 1640, pp. 103–136. Springer, Berlin (1996).  https://doi.org/10.1007/bfb0093708 CrossRefGoogle Scholar
  54. Liu, I-S., Müller, I.: Extended thermodynamics of classical and degenerate ideal gases. Arch. Rat. Mech. Anal. 83, 285–332 (1983). https://doi.org/10.1007/bf00963838 MathSciNetzbMATHCrossRefGoogle Scholar
  55. Liu T.-P., Ruggeri, T: Entropy production and admissibility of shocks. Acta Mathematicae Applicatae Sinica, English Series 1, 1–12 (2003). https://doi.org/10.1007/s10255-003-0074-6 CrossRefGoogle Scholar
  56. Luo, S.N., Ahrens, T.J., Çağin, T., Strachan, A., Goddard III, W.A., Swift, D.C.: Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments. Phys. Rev. B 68, 134206 (2003).  https://doi.org/10.1103/physrevb.68.134206 CrossRefGoogle Scholar
  57. Matsuda, A., Kondo K., Nakamura, K.G.: Nanosecond rapid freezing of liquid benzene under shock compression studied by time-resolved coherent anti-Stokes Raman spectroscopy. J. Chem. Phys. 124, 054501 (2006). https://doi.org/10.1063/1.2165196 CrossRefGoogle Scholar
  58. Meixner, J.: Absorption und Dispersion des Schalles in Gasen mit chemisch reagierenden und anregbaren Komponenten. I. Teil. Ann. Physik 43, 470–487 (1943).  https://doi.org/10.1002/andp.19434350608 CrossRefGoogle Scholar
  59. Meixner, J.: Allgemeine Theorie der Schallabsorption in Gasen und Flussigkeiten unter Berucksichtigung der Transporterscheinungen. Acoustica 2, 101–109 (1952)MathSciNetGoogle Scholar
  60. Mentrelli, A., Ruggeri, T.: Asymptotic behavior of Riemann and Riemann with structure problems for a 2×2 hyperbolic dissipative system, Suppl. Rend. Circ. Mat. Palermo II 78, 201–226 (2006)MathSciNetzbMATHGoogle Scholar
  61. Morris, D.G.: An investigation of the shock-induced transformation of graphite to diamond. J. Appl. Phys. 51, 2059–2065 (1980). https://doi.org/10.1063/1.327873 CrossRefGoogle Scholar
  62. Mott-Smith, H.W.: The solution of the Boltzmann equation for a shock wave, Phys. Rev. 82, 885–892 (1951).  https://doi.org/10.1103/physrev.82.885 MathSciNetzbMATHCrossRefGoogle Scholar
  63. Müller, I.; Ruggeri, T.: Rational Extended Thermodynamics. 2nd edn. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-2210-1 zbMATHCrossRefGoogle Scholar
  64. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A 392, 1302–1317 (2013). https://doi.org/10.1016/j.physa.2012.12.006 MathSciNetCrossRefGoogle Scholar
  65. Ruggeri, T.: Breakdown of shock-wave-structure solutions. Phys. Rev. E 47, 4135–4140 (1993).  https://doi.org/10.1103/physreve.47.4135 MathSciNetCrossRefGoogle Scholar
  66. Ruggeri, T.: On the shock structure problem in non-equilibrium thermodynamics of gases. Transport Theory Stat. Phys. 25, 567–574 (1996). https://doi.org/10.1080/00411459608220722 MathSciNetzbMATHCrossRefGoogle Scholar
  67. Ruggeri, T.: Principio di Entropia, Sistemi Simmetrici Iperbolici e Termodinamica Estesa. In: Bonfiglioli, A, Fioresi, R., Parmeggiani, A. (eds.) Topic in Mathematics, Bologna. Qauderni dell’Unione Matematica Italiana 55, 137–150. Unione Matematica Italiana (Bologna) (2015)Google Scholar
  68. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-13341-6 zbMATHCrossRefGoogle Scholar
  69. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J. 14, 249–275 (1985).  https://doi.org/10.14492/hokmj/1381757663 MathSciNetzbMATHCrossRefGoogle Scholar
  70. Smiley, E.F., Winkler, E.H., Slawsky, Z.I.: Measurement of the vibrational relaxation effect in CO2 by means of shock tube interferograms. J. Chem. Phys. 20, 923–924 (1952). https://doi.org/10.1063/1.1700608 CrossRefGoogle Scholar
  71. Smiley, E.F., Winkler, E.H.: Shock-tube measurements of vibrational relaxation. J. Chem. Phys. 22, 2018–2022 (1954). https://doi.org/10.1063/1.1739984 CrossRefGoogle Scholar
  72. Taniguchi, S., Ruggeri, T.: On the sub-shock formation in extended thermodynamics. Int. J. Non-Linear Mech. 99, 69–78 (2018). https://doi.org/10.1016/j.ijnonlinmec.2017.10.024 CrossRefGoogle Scholar
  73. Taniguchi, S., Sugiyama, M.: Shock-induced phase transitions in systems of hard spheres with attractive interactions. Acta Appl. Math. 122, 473–483 (2012). https://doi.org/10.1007/s10440-012-9757-4 zbMATHGoogle Scholar
  74. Taniguchi, S., Mentrelli, A., Zhao, N., Ruggeri, T., Sugiyama, M.: Shock-induced phase transition in systems of hard spheres with internal degrees of freedom. Phys. Rev. E 81, 066307 (2010).  https://doi.org/10.1103/PhysRevE.82.036324 CrossRefGoogle Scholar
  75. Taniguchi, S., Mentrelli, A., Ruggeri, T., Sugiyama, M., Zhao, N.: Prediction and simulation of compressive shocks with lower perturbed density for increasing shock strength in real gases. Phys. Rev. E 82, 036324 (2010).  https://doi.org/10.1103/physreve.81.066307 CrossRefGoogle Scholar
  76. Taniguchi, S., Zhao, N., Sugiyama, M.: Shock-induced phase transitions from gas phase to solid phase. J. Phys. Soc. Jpn. 80, 083401 (2011).  https://doi.org/10.1143/jpsj.80.083401 CrossRefGoogle Scholar
  77. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014). https://doi.org/10.1063/1.4861368 CrossRefGoogle Scholar
  78. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe–Teller theory. Phys. Rev. E 89, 013025 (2014).  https://doi.org/10.1103/physreve.89.013025 CrossRefGoogle Scholar
  79. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non-Linear Mech. 79, 66–75 (2016). https://doi.org/10.1016/j.ijnonlinmec.2015.11.003 CrossRefGoogle Scholar
  80. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009). https://doi.org/10.1007/b79761 zbMATHCrossRefGoogle Scholar
  81. Vincenti, W.G.; Kruger, C.H.Jr. Introduction to Physical Gas Dynamics. John Wiley and Sons, New York (1965)Google Scholar
  82. Vink, J.: Supernova remnants: the X-ray perspective. Astron Astrophys Rev. 20, 49 (2012). https://doi.org/10.1007/s00159-011-0049-1 CrossRefGoogle Scholar
  83. Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52, R5760–R5763 (1995).  https://doi.org/10.1103/physreve.52.r5760 CrossRefGoogle Scholar
  84. Woo M., Greber, I.: Molecular dynamics simulation of piston-driven shock wave in hard sphere gas. AIAA J. 37, 215–221 (1999). https://doi.org/10.2514/2.692 CrossRefGoogle Scholar
  85. Yoo, C.S., Holmes, N.C., Ross, M., Webb, D.J., Pike, C.: Shock temperatures and melting of iron at Earth core conditions. Phys. Rev. Lett. 70, 3931–3934 (1993).  https://doi.org/10.1103/physrevlett.70.3931 CrossRefGoogle Scholar
  86. Zel’dovich, Ya.B., Raizer, Yu. P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications, Mineola, New York (2002)Google Scholar
  87. Zhao, N., Mentrelli, A., Ruggeri, T., Sugiyama, M.: Admissible shock waves and shock-induced phase transitions in a van der Waals fluids. Phys. Fluids 23, 086101 (2011). https://doi.org/10.1063/1.3622772 CrossRefGoogle Scholar
  88. Zhao, N., Sugiyama, M., Ruggeri, T.: Phase transition induced by a shock wave in hard-sphere and hard-disk systems. J. Chem. Phys. 129, 054506 (2008). https://doi.org/10.1063/1.2936990 CrossRefGoogle Scholar
  89. Zheng, Y., Zhao, N., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Non-polytropic effect on shock-induced phase transitions in a hard-sphere system. Phys. Lett. A 374, 3315–3318 (2010). https://doi.org/10.1016/j.physleta.2010.06.016 zbMATHCrossRefGoogle Scholar
  90. Zoller, K.: Zur Struktur des Verdichtungsstoßes. Zeitschr. f. Physik 130, 1–38 (1951). https://doi.org/10.1007/bf01329729 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of BolognaBolognaItaly
  2. 2.National Institute of TechnologyKitakyushu CollegeKitakyushuJapan

Personalised recommendations