Nonlinear Longitudinal Bulk Strain Waves in Layered Elastic Waveguides

  • Karima R. KhusnutdinovaEmail author
  • Matthew R. Tranter
Part of the Mathematics of Planet Earth book series (MPE, volume 6)


We consider long longitudinal bulk strain waves in layered waveguides using Boussinesq-type equations . The equations are developed using lattice models , and this is viewed as an extension of the Fermi–Pasta–Ulam problem . We describe semianalytical approaches to the solution of scattering problems in delaminated waveguides, and to the construction of the solution of an initial value problem in the class of periodic functions, motivated by the scattering problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ablowitz, M.J., Wang, X.P.: Initial time layers and Kadomtsev–Petviashvili-type equations. Stud. Appl. Math. 98(2), 121–137 (1997). MathSciNetCrossRefGoogle Scholar
  2. Alias, A., Grimshaw, R.H., Khusnutdinova, K.R.: Coupled Ostrovsky equations for internal waves in a shear flow. Phys. Fluids 26(12), 126603 (2014). CrossRefGoogle Scholar
  3. Askar, A.: Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity, Plasticity. World Scientific, Singapore (1985).
  4. Benilov, E.S., Grimshaw, R., Kuznetsova, E.P.: The generation of radiating waves in a singularly-perturbed Korteweg–de Vries equation. Physica D 69(3-4), 270–278 (1993). MathSciNetCrossRefGoogle Scholar
  5. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Phil. Trans. Roy. Soc. Lond. A Math. Phys. Sci. 272(1220), 47–78 (1972). MathSciNetCrossRefGoogle Scholar
  6. Boiti, M., Pempinelli, F., Pogrebkov, A.: The KPI equation with unconstrained initial data. Acta Appl. Math. 39(1-3), 175–192 (1995). MathSciNetCrossRefGoogle Scholar
  7. Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of Boussinesq systems of KdV–KdV type: II. Evolution of radiating solitary waves. Nonlinearity 21(12), 2825–2848 (2008). zbMATHGoogle Scholar
  8. Dauxois, T.: Fermi, Pasta, Ulam, and a mysterious lady. Physics Today 6, 55–57 (2008). CrossRefGoogle Scholar
  9. Dreiden, G.V., Khusnutdinova, K.R., Samsonov, A.M., Semenova, I.V.: Splitting induced generation of soliton trains in layered waveguides. J. Appl. Phys. 107(3), 034909 (2010). CrossRefGoogle Scholar
  10. Dreiden, G.V., Khusnutdinova, K.R., Samsonov, A.M., Semenova, I.V.: Bulk strain solitary waves in bonded layered polymeric bars with delamination. J. Appl. Phys. 112(6), 063516 (2012). CrossRefGoogle Scholar
  11. Engelbrecht, J., Salupere, A., Tamm, K.: Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48(8), 717–726 (2011). MathSciNetCrossRefGoogle Scholar
  12. Fermi, E., Pasta, J., Ulam, S.: Studies of Nonlinear Problems. Los Alamos Scientific Laboratory Report No. LA-1940, 1955. Lect. Appl. Math. 15, 143–155 (1974)Google Scholar
  13. Garbuzov, F.E., Khusnutdinova, K.R., Semenova, I.V.: On Boussinesq-type models for long longitudinal waves in elastic rods. Wave Motion 88, 129–143 (2019). MathSciNetCrossRefGoogle Scholar
  14. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967). CrossRefGoogle Scholar
  15. Gerkema, T.: A unified model for the generation and fission of internal tides in a rotating ocean. J. Marine Res. 54(3), 421–450 (1996). CrossRefGoogle Scholar
  16. Grimshaw, R.H.J.: Adjustment processes and radiating solitary waves in a regularised Ostrovsky equation. Eur. J. Mech. B/Fluids 18(3), 535–543 (1999). MathSciNetCrossRefGoogle Scholar
  17. Grimshaw, R., Helfrich, K.: The effect of rotation on internal solitary waves. IMA J. Appl. Math. 77(3), 326–339 (2012). MathSciNetCrossRefGoogle Scholar
  18. Grimshaw, R., Melville, W.K.: On the derivation of the modified Kadomtsev–Petviashvili equation. Stud. Appl. Math. 80(3), 183–202 (1989). MathSciNetCrossRefGoogle Scholar
  19. Grimshaw, R.H.J., Ostrovsky, L.A., Shrira, V.I., Stepanyants, Y.A.: Long nonlinear surface and internal gravity waves in a rotating ocean. Surveys Geophys. 19(4), 289–338 (1998). CrossRefGoogle Scholar
  20. Il’yushina, E.A.: Towards formulation of elasticity theory of inhomogeneous solids with microstructure. Doctoral dissertation, PhD Thesis, Lomonosov Moscow State University (1976) (in Russian)Google Scholar
  21. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press (1997).
  22. Khusnutdinova, K.R.: Nonlinear waves in a two-row system of particles. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2, 71–76 (1992) (in Russian)MathSciNetzbMATHGoogle Scholar
  23. Khusnutdinova, K.R.: Wave dynamics of a medium constructed on the basis of a two-row system of particles. Deep Refinement of Hydrocarbon Material, 2, 136–145 (1993) (in Russian)Google Scholar
  24. Khusnutdinova, K.R., Moore, K.R.: Initial-value problem for coupled Boussinesq equations and a hierarchy of Ostrovsky equations. Wave Motion 48(8), 738–752 (2011). MathSciNetCrossRefGoogle Scholar
  25. Khusnutdinova, K.R., Samsonov, A.M.: Fission of a longitudinal strain solitary wave in a delaminated bar. Phys. Rev. E 77(6), 066603 (2008). MathSciNetCrossRefGoogle Scholar
  26. Khusnutdinova, K.R., Tranter, M.R.: Modelling of nonlinear wave scattering in a delaminated elastic bar. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 471(2183), 20150584 (2015). MathSciNetCrossRefGoogle Scholar
  27. Khusnutdinova, K.R., Tranter, M.R.: On radiating solitary waves in bi-layers with delamination and coupled Ostrovsky equations. Chaos 27(1), 013112 (2017). MathSciNetCrossRefGoogle Scholar
  28. Khusnutdinova, K.R., Tranter, M.R.: D’Alembert-type solution of the Cauchy problem for the Boussinesq–Klein–Gordon equation. Stud. Appl. Math. 142, 551–585 (2019). MathSciNetzbMATHGoogle Scholar
  29. Khusnutdinova, K.R., Samsonov, A.M., Zakharov, A.S.: Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures. Phys. Rev. E 79(5), 056606 (2009). MathSciNetCrossRefGoogle Scholar
  30. Khusnutdinova, K.R., Moore, K.R., Pelinovsky, D.E.: Validity of the weakly nonlinear solution of the Cauchy problem for the Boussinesq-type equation. Stud. Appl. Math. 133(1), 52–83 (2014). MathSciNetCrossRefGoogle Scholar
  31. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press (1999)Google Scholar
  32. Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Okeanologiya 18, 119–125 (1978).Google Scholar
  33. Peets, T., Tamm, K., Engelbrecht, J.: On the role of nonlinearities in the Boussinesq-type wave equations. Wave Motion 71, 113–119 (2017). MathSciNetCrossRefGoogle Scholar
  34. Pelinovsky, E.N.: On the soliton evolution in inhomogeneous media. Appl. Mech. Techn. Phys. 6, 80–85 (1971)Google Scholar
  35. Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific (2003).
  36. Samsonov, A.M.: Strain Solitons in Solids and how to construct them. Chapman and Hall/CRC, Boca Raton (2001).zbMATHGoogle Scholar
  37. Tappert, F.D., Zabusky, N.J.: Gradient-induced fission of solitons. Phys. Rev. Lett. 27(26), 1774–1776 (1971). CrossRefGoogle Scholar
  38. Tranter, M.R.: Solitary wave propagation in elastic bars with multiple sections and layers. Wave Motion 86, 21–31 (2019). MathSciNetCrossRefGoogle Scholar
  39. Yagi, D., Kawahara, T.: Strongly nonlinear envelope soliton in a lattice model for periodic structure. Wave Motion 34(1), 97–107 (2001). CrossRefGoogle Scholar
  40. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLoughborough UniversityLoughboroughUK

Personalised recommendations