Advertisement

Nonlinear Models of Finite Amplitude Interfacial Waves in Shallow Two-Layer Fluid

  • Oxana Kurkina
  • Andrey Kurkin
  • Efim Pelinovsky
  • Yury Stepanyants
  • Tatiana Talipova
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 6)

Abstract

We present an example of systematic use of asymptotic methods for the description of long waves at the interface between two fluids of different densities. The governing equations for weakly nonlinear long interfacial waves are consistently derived for a general case of nonpotential flow and taking into account surface tension between two layers. Particular attention is given to the situations when some terms in the resulting fifth order KdV-type evolution equation become small, vanish, or change their sign.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financially supported by the state task program in the sphere of scientific activity of the Ministry of Science and Higher Education of the Russian Federation (projects No 5.4568.2017/6.7 and 5.1246.2017/4.6), grant of the President of the Russian Federation (NSh-2685.2018.5), Program “Nonlinear Dynamics” of the Russian Academy of Sciences and grants of the Russian Foundation for Basic Research (RFBR No 18-02-00042, 19-05-00161).

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM Studies in Applied and Numerical Mathematics, vol. 4, Philadelphia (1981). https://doi.org/10.1137/1.9781611970883
  2. Apel, J., Ostrovsky, L.A., Stepanyants, Y.A., Lynch, J.F.: Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 121(2), 695–722 (2007). https://doi.org/10.1121/1.2395914 CrossRefGoogle Scholar
  3. Craig, W., Groves, M.D.: Normal forms for wave motion in fluid interfaces. Wave Motion 31, 21–41 (2000). https://doi.org/10.1016/s0165-2125(99)00022-0 MathSciNetCrossRefGoogle Scholar
  4. Craig W., Guyenne P., Kalisch H.: A new model for large amplitude long internal waves. C. R. Mech. 332(7), 525–530 (2004). https://doi.org/10.1016/j.crme.2004.02.026 CrossRefGoogle Scholar
  5. Djordjevic, V.D., Redekopp, L.G.: The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr. 8(6), 1016–1024 (1978). https://doi.org/10.1175/1520-0485(1978)008<1016:tfadoi>2.0.co;2 CrossRefGoogle Scholar
  6. Engelbrecht, J., Pelinovsky, E.N., Fridman, V.E.: Nonlinear Evolution Equations. Longman Scientific & Technical, Harlow (1988)Google Scholar
  7. Grimshaw, R.H.J., Ostrovsky, L.A., Shrira, V.I., Stepanyants, Yu.A.: Long nonlinear surface and internal gravity waves in a rotating ocean. Surveys Geophys. 19(4), 289–338 (1998)CrossRefGoogle Scholar
  8. Grimshaw, R., Pelinovsky, E., Talipova, T.: Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D 132, 40–62 (1999). https://doi.org/10.1016/s0167-2789(99)00045-7 MathSciNetCrossRefGoogle Scholar
  9. Grimshaw, R., Pelinovsky, E., Poloukhina, O.: Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlin. Processes Geophys. 9, 221–235 (2002a).  https://doi.org/10.5194/npg-9-221-2002 CrossRefGoogle Scholar
  10. Grimshaw, R., Pelinovsky, D., Pelinovsky, E., Slunyaev, A.: Generation of large-amplitude solitons in the extended Korteweg–de Vries equation. Chaos 12(4), 1070–1076 (2002b). https://doi.org/10.1063/1.1521391 MathSciNetCrossRefGoogle Scholar
  11. Grimshaw, R., Talipova, T., Pelinovsky, E., Kurkina, O.: Internal solitary waves: propagation, deformation and disintegration. Nonlin. Processes Geophys. 17, 633–649 (2010a).  https://doi.org/10.5194/npg-17-633-2010 CrossRefGoogle Scholar
  12. Grimshaw, R., Slunyaev, A., Pelinovsky, E.: Generation of solitons and breathers in the extended Korteweg–de Vries equation with positive cubic nonlinearity. Chaos 20(1), 013102 (2010b). https://doi.org/10.1063/1.3279480 MathSciNetCrossRefGoogle Scholar
  13. Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395–425 (2006).  https://doi.org/10.1146/annurev.fluid.38.050304.092129 MathSciNetCrossRefGoogle Scholar
  14. Holloway, P., Pelinovsky, E., Talipova, T.: A generalised Korteweg–de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res.–Oceans 104(18), 333–350 (1999). https://doi.org/10.1029/1999jc900144 CrossRefGoogle Scholar
  15. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan 33, 260–264 (1972).  https://doi.org/10.1143/jpsj.33.260 CrossRefGoogle Scholar
  16. Kawahara, T., Takaoka, M.: Chaotic motions in oscillatory soliton lattice. J. Phys. Soc. Japan 57(11), 3714–3732 (1988).  https://doi.org/10.1143/jpsj.57.3714 MathSciNetCrossRefGoogle Scholar
  17. Khusnutdinova, K., Stepanyants, Y., Tranter, M.: The influence of the nonlinear dispersion on the shapes of solitary waves. Phys. Fluids 30, 022104 (2018)CrossRefGoogle Scholar
  18. Koop, C., Butler, G.: An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 112, 225–251 (1981). https://doi.org/10.1017/s0022112081000372 MathSciNetCrossRefGoogle Scholar
  19. Kraenkel, R.A.: First-order perturbed Korteweg–de Vries solitons. Phys. Rev. E 57(4), 4775–4777 (1998).  https://doi.org/10.1103/physreve.57.4775 MathSciNetCrossRefGoogle Scholar
  20. Kurkina, O.E., Kurkin, A.A., Soomere, T., Pelinovsky, E.N., Rouvinskaya, E.A.: Higher-order (2+4) Korteweg–de Vries-like equation for interfacial waves in a symmetric three-layer fluid. Phys. Fluids 23(11), 116602-1 (2011). https://doi.org/10.1063/1.3657816 CrossRefGoogle Scholar
  21. Kurkina, O., Kurkin, A., Rouvinskaya, E., Soomere, T.: Propagation regimes of interfacial solitary waves in a three-layer fluid. Nonlin. Processes Geophys. 22, 117–132 (2015a).  https://doi.org/10.5194/npg-22-117-2015 CrossRefGoogle Scholar
  22. Kurkina, O., Singh, N., Stepanyants, Y.: Structure of internal solitary waves in two-layer fluid at near-critical situation. Commun. Nonlin. Sci. Numer. Modeling 22, 1235–1242 (2015b). https://doi.org/10.1016/j.cnsns.2014.09.018 MathSciNetCrossRefGoogle Scholar
  23. Lee, C.Y., Beardsley, R.C.: The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res.–Oceans 79(3), 453–462 (1974). https://doi.org/10.1029/jc079i003p00453 CrossRefGoogle Scholar
  24. Leibovich, S., Seebass, A.R. (eds.): Nonlinear Waves. Cornell University Press, London (1974)zbMATHGoogle Scholar
  25. Marchant, T.R.: Asymptotic solitons of the extended Korteweg–de Vries equation. Phys. Rev. E 59(3), 3745–3748 (1999).  https://doi.org/10.1103/PhysRevE.59.3745 MathSciNetCrossRefGoogle Scholar
  26. Marchant, T.R., Smyth, N.F.: Soliton interaction for the extended Korteweg–de Vries equation. IMA J. Appl. Math. 56(2), 157–176 (1996).  https://doi.org/10.1093/imamat/56.2.157 MathSciNetCrossRefGoogle Scholar
  27. Marchant, T.R., Smyth, N.F.: An undular bore solution for the higher-order Korteweg–de Vries equation. J. Phys. A Math. Gener. 39(37), L563–L569 (2006), https://doi.org/10.1088/0305-4470/39/37/L02 MathSciNetCrossRefGoogle Scholar
  28. Miropol’sky, Yu.Z.: Dynamics of Internal Gravity Waves in the Ocean. Springer, Heidelberg (2001). https://doi.org/10.1007/978-94-017-1325-2
  29. Ostrovsky, L.A., Pelinovsky, E.N., Shrira, V.I., Stepanyants Y.A.: Beyond the KdV: Post-explosion development. Chaos 25(9), 097620 (2015). https://doi.org/10.1063/1.4927448 MathSciNetCrossRefGoogle Scholar
  30. Ostrovsky, L.A., Potapov, A.I.: Modulated Waves: Theory and Applications. Johns Hopkins University Press, Baltimore (2002)zbMATHGoogle Scholar
  31. Ostrovsky, L.A., Stepanyants, Y.A.: Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos 15(3) 037111 (2005). https://doi.org/10.1063/1.2107087 MathSciNetCrossRefGoogle Scholar
  32. Pelinovsky, E., Polukhina, O., Slunyaev, A., Talipova, T.: Internal solitary waves, In: Grimshaw, R.H.J. (ed.) Solitary Waves in Fluids, pp. 85–110. WIT Press, Southampton (2007). https://doi.org/10.2495/978-1-84564-157-3/04 CrossRefGoogle Scholar
  33. Slyunyaev, A.V., Pelinovsky, E.N.: Dynamics of large-amplitude solitons. J. Exp. Theor. Phys. 89(1), 173–181 (1999). https://doi.org/10.1134/1.558966 CrossRefGoogle Scholar
  34. Slyunyaev, A.V.: Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. J. Exp. Theor. Phys. 92(3), 529–534 (2001). https://doi.org/10.1134/1.1364750 CrossRefGoogle Scholar
  35. Yih, C.S.: Gravity waves in a stratified fluid. J. Fluid Mech. 8(4), 481–508 (1960). https://doi.org/10.1017/s002211206000075x MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oxana Kurkina
    • 1
  • Andrey Kurkin
    • 1
  • Efim Pelinovsky
    • 2
    • 3
    • 4
  • Yury Stepanyants
    • 4
  • Tatiana Talipova
    • 1
    • 2
  1. 1.Nizhny Novgorod State Technical University n.a. R.E. AlekseevNizhny NovgorodRussia
  2. 2.Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)Nizhny NovgorodRussia
  3. 3.National Research University–Higher School of EconomicsNizhny NovgorodRussia
  4. 4.University of Southern QueenslandToowoombaAustralia

Personalised recommendations