Advertisement

Operator Splits and Multiscale Methods in Computational Dynamics

  • Harm AskesEmail author
  • Dario De Domenico
  • Mingxiu Xu
  • Inna M. Gitman
  • Terry Bennett
  • Elias C. Aifantis
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 6)

Abstract

Gradient enriched continua are an elegant and versatile class of material models that are able to simulate a variety of physical phenomena, ranging from singularity-free descriptions of crack tips and dislocations, via size dependent mechanical response, to dispersive wave propagation. However, the increased order of the governing partial differential equations has historically complicated analytical and numerical solution methods. Inspired by the work of Ru and Aifantis (Acta Mech. 101(1-4), 59–68 (1993)), this contribution focusses on operator split methods that allow to reduce the order of the governing equations. It will be shown that this order reduction leads to multiscale reformulations of the original equations in which the macrolevel unknowns are fully coupled to the microlevel unknowns. As a first example, gradient enriched equations of elastodynamics are considered with second order and fourth order microinertia terms. The second example concerns dynamic piezomagnetics with gradient enrichment of both the mechanical fields and the magnetic fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

HA, IMG and ECA gratefully acknowledge support of the EU RISE project FRAMED-734485. MX gratefully acknowledges financial support from the China Scholarship Council and the Fundamental Research Funds for the Central Universities (FRFBR-16-017A).

References

  1. Aifantis, E.: Strain gradient interpretation of size effects. Int. J. Fract. 95(1-4), 299–314 (1999). https://doi.org/10.1007/978-94-011-4659-3_16 CrossRefGoogle Scholar
  2. Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Engng. Mater. Technol. 106(4), 326–330 (1984). https://doi.org/10.1115/1.3225725 CrossRefGoogle Scholar
  3. Aifantis, E.C.: The physics of plastic deformation. Int. J. Plasticity 3(3), 211–247 (1987). https://doi.org/10.1016/0749-6419(87)90021-0 zbMATHCrossRefGoogle Scholar
  4. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Engng Sci. 30(10), 279–1299 (1992). https://doi.org/10.1016/0020-7225(92)90141-3 zbMATHCrossRefGoogle Scholar
  5. Altan, S., Aifantis, E.: On the structure of the mode III crack-tip in gradient elasticity. Scripta Metallurgica et Materialia 26(2), 319–324 (1992). https://doi.org/10.1016/0956-716x(92)90194-j CrossRefGoogle Scholar
  6. Askes, H., Aifantis, E.C.: Numerical modeling of size effects with gradient elasticity – Formulation, meshless discretization and examples. Int. J. Fract. 117(4), 347–358 (2002). https://doi.org/10.1023/A:102222552 CrossRefGoogle Scholar
  7. Askes, H., Aifantis, E.C.: Gradient elasticity theories in statics and dynamics – A unification of approaches. Int. J. Fract. 139(2), 297–304 (2006). https://doi.org/10.1007/s10704-006-8375-4 zbMATHCrossRefGoogle Scholar
  8. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011). https://doi.org/10.1016/j.ijsolstr.2011.03.006 CrossRefGoogle Scholar
  9. Askes, H., Bennett, T., Aifantis, E.C.: A new formulation and C 0-implementation of dynamically consistent gradient elasticity. Int. J. Numer. Methods Engng. 72(1), 111–126 (2007).  https://doi.org/10.1002/nme.2017 MathSciNetzbMATHCrossRefGoogle Scholar
  10. Askes, H., Bennett, T., Gitman, I., Aifantis, E.: A multi-scale formulation of gradient elasticity and its finite element implementation. In: Papadrakakis, M., Topping, B. (eds.) Trends in Engineering Computational Technology, pp. 189–208. Saxe-Coburg Publications, Stirlingshire (2008a).  https://doi.org/10.4203/csets.20.10 CrossRefGoogle Scholar
  11. Askes, H., Morata, I., Aifantis, E.C.: Finite element analysis with staggered gradient elasticity. Computers & Structures 86(11-12), 1266–1279 (2008b). https://doi.org/10.1016/j.compstruc.2007.11.002 CrossRefGoogle Scholar
  12. Bennett, T., Askes, H.: Finite element modelling of wave dispersion with dynamically consistent gradient elasticity. Comput. Mech. 43(6), 815–825 (2009). https://doi.org/10.1007/s00466-008-0347-2 zbMATHCrossRefGoogle Scholar
  13. Bennett, T., Gitman, I.M., Askes, H.: Elasticity theories with higher-order gradients of inertia and stiffness for the modelling of wave dispersion in laminates. Int. J. Fract. 148(2), 185–193 (2007). https://doi.org/10.1007/s10704-008-9192-8 zbMATHCrossRefGoogle Scholar
  14. Bennett, T., Rodríguez-Ferran, A., Askes, H.: Damage regularisation with inertia gradients. Eur. J. Mech. A/Solids 31(1), 131–138 (2012). https://doi.org/10.1016/j.euromechsol.2011.08.005 MathSciNetzbMATHCrossRefGoogle Scholar
  15. Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011). https://doi.org/10.1007/s00707-011-0468-0 zbMATHCrossRefGoogle Scholar
  16. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11-12), 1981–1990 (2013). https://doi.org/10.1016/j.ijsolstr.2013.02.018 CrossRefGoogle Scholar
  17. De Domenico, D., Askes, H.: Computational aspects of a new multi-scale dispersive gradient elasticity model with micro-inertia. Int. J. Numer. Methods Engng. 109(1), 52–72 (2017).  https://doi.org/10.1002/nme.5278 MathSciNetCrossRefGoogle Scholar
  18. De Domenico, D., Askes, H.: Nano-scale wave dispersion beyond the first Brillouin zone simulated with inertia gradient continua. J. Appl. Phys. 124(20), 205107 (2018). https://doi.org/10.1063/1.5045838 CrossRefGoogle Scholar
  19. De Domenico, D., Askes, H., Aifantis, E.C.: Gradient elasticity and dispersive wave propagation: Model motivation and length scale identification procedures in concrete and composite laminates. Int. J. Solids Struct. 158, 176–190 (2019). https://doi.org/10.1016/j.ijsolstr.2018.09.007 CrossRefGoogle Scholar
  20. De Domenico, D., Askes, H.: A new multi-scale dispersive gradient elasticity model with micro-inertia: Formulation and-finite element implementation. Int. J. Numer. Methods Engng. 108(5), 485–512 (2016).  https://doi.org/10.1002/nme.5222 MathSciNetCrossRefGoogle Scholar
  21. Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Systems 3(1), 43–82 (2015).  https://doi.org/10.2140/memocs.2015.3.43 MathSciNetzbMATHCrossRefGoogle Scholar
  22. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Phil. Mag. 85(33-35), 4127–4141 (2005). https://doi.org/10.1080/14786430500362769 zbMATHCrossRefGoogle Scholar
  23. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983). https://doi.org/10.1063/1.332803 CrossRefGoogle Scholar
  24. Georgiadis, H., Vardoulakis, I., Lykotrafitis, G.: Torsional surface waves in a gradient-elastic half-space. Wave Motion 31(4), 333–348 (2000). https://doi.org/10.1016/s0165-2125(99)00035-9 MathSciNetzbMATHCrossRefGoogle Scholar
  25. Gitman, I., Askes, H., Sluys, L.: Representative volume size as a macroscopic length scale parameter. In: Proceedings of 5th International Conference on Fracture Mechanics of Concrete and Concrete Structures, vol. 1, pp. 483–491 (2004)Google Scholar
  26. Gitman, I.M., Askes, H., Aifantis, E.C.: The representative volume size in static and dynamic micro-macro transitions. Int. J. Fract. 135(1-4), L3–L9 (2005). https://doi.org/10.1007/s10704-005-4389-6 zbMATHCrossRefGoogle Scholar
  27. Gutkin, M.Y., Aifantis, E.: Screw dislocation in gradient elasticity. Scripta Mater. 35(11), 1353–1358 (1996). https://doi.org/10.1016/1359-6462(96)00295-3 CrossRefGoogle Scholar
  28. Gutkin, M.Y., Aifantis, E.: Edge dislocation in gradient elasticity. Scripta Mater. 36(1), 129–135 (1997). https://doi.org/10.1016/s1359-6462(96)00352-1 CrossRefGoogle Scholar
  29. Gutkin, M.Y., Aifantis, E.: Dislocations in the theory of gradient elasticity. Scripta Mater. 5(40), 559–566 (1999). https://doi.org/10.1016/s1359-6462(98)00424-2 CrossRefGoogle Scholar
  30. Huerta, A., Pijaudier-Cabot, G.: Discretization influence on regularization by two localization limiters. J. Engng. Mech. 120(6), 1198–1218 (1994). https://doi.org/10.1061/(asce)0733-9399(1994)120:6(1198) CrossRefGoogle Scholar
  31. Jirásek, M., Marfia, S.: Non-local damage model based on displacement averaging. Int. J. Numer. Methods Engng. 63(1), 77–102 (2005).  https://doi.org/10.1002/nme.1262 MathSciNetzbMATHCrossRefGoogle Scholar
  32. Kouznetsova, V., Geers, M., Brekelmans, W.: Size of a representative volume element in a second-order computational homogenization framework. Int. J. Multiscale Comput. Engng. 2(4), 575–598 (2004).  https://doi.org/10.1615/intjmultcompeng.v2.i4.50 CrossRefGoogle Scholar
  33. Lurie, S., Belov, P., Volkov-Bogorodsky, D., Tuchkova, N.: Nanomechanical modeling of the nanostructures and dispersed composites. Comput. Mater. Sci. 28(3-4), 529–539 (2003). https://doi.org/10.1016/j.commatsci.2003.08.010 CrossRefGoogle Scholar
  34. Metrikine, A., Askes, H.: An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Phil. Mag. 86(21-22), 3259–3286 (2006). https://doi.org/10.1080/14786430500197827 CrossRefGoogle Scholar
  35. Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: Part 1: Generic formulation. Eur. J. Mech. A/Solids 21(4), 555–572 (2002). https://doi.org/10.1016/s0997-7538(02)01218-4 zbMATHCrossRefGoogle Scholar
  36. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16(1), 51–78 (1964). https://doi.org/10.1007/bf00248490 MathSciNetzbMATHCrossRefGoogle Scholar
  37. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965). https://doi.org/10.1016/0020-7683(65)90006-5 CrossRefGoogle Scholar
  38. Mühlhaus, H.B., Alfantis, E.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28(7), 845–857 (1991). https://doi.org/10.1016/0020-7683(91)90004-y MathSciNetzbMATHCrossRefGoogle Scholar
  39. Papargyri-Beskou, S., Polyzos, D., Beskos, D.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009). https://doi.org/10.1016/j.ijsolstr.2009.05.002 zbMATHCrossRefGoogle Scholar
  40. Peerlings, R., Geers, M., De Borst, R., Brekelmans, W.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44-45), 7723–7746 (2001). https://doi.org/10.1016/s0020-7683(01)00087-7 zbMATHCrossRefGoogle Scholar
  41. Peerlings, R.H., De Borst, R., Brekelmans, W.A., Vree, J.H., Spee, I.: Some observations on localization in non-local and gradient damage models. Eur. J. Mech. A/Solids 15(6), 937–953 (1996)zbMATHGoogle Scholar
  42. Pichugin, A., Askes, H., Tyas, A.: Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories. J. Sound Vibr. 313(3-5), 858–874 (2008). https://doi.org/10.1016/j.jsv.2007.12.005 CrossRefGoogle Scholar
  43. Rodríguez-Ferran, A., Bennett, T., Askes, H., Tamayo-Mas, E.: A general framework for softening regularisation based on gradient elasticity. Int. J. Solids Struct. 48(9), 1382–1394 (2011). https://doi.org/10.1016/j.ijsolstr.2011.01.022 zbMATHCrossRefGoogle Scholar
  44. Ru, C., Aifantis, E.: A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech. 101(1-4), 59–68 (1993). https://doi.org/10.1007/bf01175597 MathSciNetzbMATHCrossRefGoogle Scholar
  45. Tenek, L.T., Aifantis, E.: A two-dimensional finite element implementation of a special form of gradient elasticity. Comput. Modeling Engng. Sci. 3(6), 731–742 (2002)MathSciNetzbMATHGoogle Scholar
  46. Unger, D.J., Aifantis, E.C.: The asymptotic solution of gradient elasticity for mode III. Int. J. Fract. 71(2), R27–R32 (1995). https://doi.org/10.1007/bf00033757 CrossRefGoogle Scholar
  47. Vardoulakis, I., Aifantis, E.: On the role of microstructure in the behavior of soils: effects of higher order gradients and internal inertia. Mech. Mater. 18(2), 151–158 (1994). https://doi.org/10.1016/0167-6636(94)00002-6 CrossRefGoogle Scholar
  48. Xu, M., Gitman, I.M., Askes, H.: A gradient-enriched continuum model for magneto-elastic coupling: Formulation, finite element implementation and in-plane problems. Comput. Struct. 212, 275–288 (2019). https://doi.org/10.1016/j.compstruc.2018.11.004 CrossRefGoogle Scholar
  49. Yarnell, J.L., Warren, J.L., Koenig, S.H.: Experimental dispersion curves for phonons in aluminum. In: Wallis, R. (ed.) Lattice Dynamics, pp. 57–61. Pergamon, Oxford (1965). https://doi.org/10.1016/b978-1-4831-9838-5.50014-5 CrossRefGoogle Scholar
  50. Yue, Y., Xu, K., Aifantis, E.: Microscale size effects on the electromechanical coupling in piezoelectric material for anti-plane problem. Smart Mater. Struct. 23(12), 125043 (2014). https://doi.org/10.1088/0964-1726/23/12/125043 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Harm Askes
    • 1
    Email author
  • Dario De Domenico
    • 2
  • Mingxiu Xu
    • 3
  • Inna M. Gitman
    • 4
  • Terry Bennett
    • 5
  • Elias C. Aifantis
    • 6
  1. 1.Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Department of EngineeringUniversity of MessinaMessinaItaly
  3. 3.Department of Applied MechanicsUniversity of Science and Technology BeijingBeijingChina
  4. 4.Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK
  5. 5.School of Civil, Environmental and Mining EngineeringUniversity of AdelaideAdelaideAustralia
  6. 6.Laboratory of Mechanics and MaterialsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations