Advertisement

Design Processes and Decisions

  • Jonathan SaundersEmail author
Chapter
Part of the Security Informatics and Law Enforcement book series (SILE)

Abstract

This chapter discusses the design of serious games and presents the CENTRIC Serious Games Developmental Framework to guide design processes and decisions. Considering aspects such as pedagogy, immersion, fidelity and presence, this framework discusses a holistic design method, which utilises the potential of co-development to create a successful serious game.

Keywords

Serious games Co-development Design framework Virtual reality Fidelity Immersion Pedagogy Learning Training 

References

  1. Adams, E., & Dormans, J. (2012). Game mechanics: Advanced game design. Berkeley, CA: New Riders.Google Scholar
  2. Alexander, A. L., Brunyé, T., Sidman, J., & Weil, S. A. (2005). From gaming to training: A review of studies on fidelity, immersion, presence, and buy-in and their effects on transfer in pc-based simulations and games. DARWARS Training Impact Group, 5, 1–14.Google Scholar
  3. Arthur, K. W., & Brooks Jr, F. P. (2000). Effects of field of view on performance with head-mounted displays. University of North Carolina at Chapel Hill.Google Scholar
  4. Begault, D. R. (1993). Head-up auditory displays for traffic collision avoidance system advisories: A preliminary investigation. Human Factors, 35(4), 707–717.CrossRefGoogle Scholar
  5. Begault, D. R., Ellis, S. R., & Wenzel, E. M. (1998, October). Headphone and Head-Mounted Visual Displays for Virtual Environments. In Audio Engineering Society Conference: 15th International Conference: Audio, Acoustics & Small Spaces. Audio Engineering Society.Google Scholar
  6. Bolia, R. S., D’Angelo, W. R., & McKinley, R. L. (1999). Aurally aided visual search in three-dimensional space. Human Factors, 41(4), 664–669.CrossRefGoogle Scholar
  7. Bonneel, N., Suied, C., Viaud-Delmon, I., & Drettakis, G. (2010). Bimodal perception of audio-visual material properties for virtual environments. ACM Transactions on Applied Perception, 7(1), 1.CrossRefGoogle Scholar
  8. Bowman, D. A., McMahan, R. P., & Ragan, E. D. (2012). Questioning naturalism in 3D user interfaces. Communications of the ACM, 55(9), 78–88.CrossRefGoogle Scholar
  9. Cui, J., & Sourin, A. (2014). Feasibility study on free hand geometric modelling using leap motion in VRML/X3D. International Conference on Cyberworlds (pp. 389–392). IEEE.Google Scholar
  10. Dinh, H. Q., Walker, N., Hodges, L. F., Song, C., & Kobayashi, A. (1999). Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. Proceedings IEEE Virtual Reality (Cat. No. 99CB36316) (pp. 222–228). IEEE.Google Scholar
  11. Feygin, D., Keehner, M., & Tendick, R. (2002). Haptic guidance: Experimental evaluation of a haptic training method for a perceptual motor skill. Haptic Interfaces for Virtual Environment and Teleoperator Systems (pp. 40–47). IEEE.Google Scholar
  12. Gruchalla, K. (2004). Immersive well-path editing: Investigating the added value of immersion. EEE Virtual Reality, 2004, 157–164.Google Scholar
  13. Hulusic, V., Harvey, C., Debattista, K., Tsingos, N., Walker, S., Howard, D., et al. (2012). Acoustic rendering and auditory–visual cross-modal perception and interaction. Computer Graphics Forum, 31, 102–131.CrossRefGoogle Scholar
  14. Jones, D. L., Stanney, K. M., & Foaud, H. (2005). An optimized spatial audio system for virtual training simulations: Design and evaluation. Georgia Institute of Technology.Google Scholar
  15. Ju, Z., & Liu, H. (2011). A unified fuzzy framework for human-hand motion recognition. IEEE Transactions on Fuzzy Systems, 19(5), 901–913.CrossRefGoogle Scholar
  16. King, G. (2005). Play, modality and claims of realism in full Spectrum warrior. Aesthetics of Play Conference Proceedings.Google Scholar
  17. Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. New Jersey, USA: FT Press.Google Scholar
  18. Livingston, M. A., Sebastian, J., Ai, Z., & Decker, J. W. (2012). Performance measurements for the Microsoft Kinect skeleton. IEEE Virtual Reality Workshops (VRW) (pp. 119–120). IEEE.Google Scholar
  19. Mania, K., Wooldridge, D., Coxon, M., & Robinson, A. (2006). Mania, Katerina, Dave Wooldridge, Matthew Coxon, and Andrew Robinson. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments. IEEE Transactions on Visualization and Computer Graphics, 12(3), 396–404.CrossRefGoogle Scholar
  20. McKinley, R. L., & Ericson, M. A. (1997). Flight demonstration of a 3-D auditory display. InBinaural and Spatial Hearing in Real and Virtual Environments. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. McMahan, R. P., Bowman, D. A., Zielinski, D. J., & Brady, R. B. (2012). Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Transactions on Visualization and Computer Graphics, 18(4), 626–633.CrossRefGoogle Scholar
  22. Morris, D., Tan, H., Barbagli, F., Chang, T., & Salisbury, K. (2007). Haptic feedback enhances force skill learning. Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07) (pp. 21–26). IEEE.Google Scholar
  23. Patel, K., Bailenson, J. N., Hack-Jung, S., Diankov, R., & Bajcsy, R. (2006). The effects of fully immersive virtual reality on the learning of physical tasks. 9th Annual International Workshop on Presence, (pp. 87–94). Ohio, USA.Google Scholar
  24. Pausch, R., Proffitt, D., & Williams, G. (1997, August). Quantifying immersion in virtual reality. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques (pp. 13–18). ACM Press/Addison-Wesley Publishing Co..Google Scholar
  25. Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48(3), 214–226.CrossRefGoogle Scholar
  26. Ragan, E. D., Bowman, D. A., Kopper, R., Stinson, C., Scerbo, S., & McMahan, R. P. (2015). Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Transactions on Visualization and Computer Graphics, 21(7), 794–807.CrossRefGoogle Scholar
  27. Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 6(2), 7.Google Scholar
  28. Rojas, D., Kapralos, B., Cristancho, S., Collins, K., Hogue, A., Conati, C., et al. (2012). Developing effective serious games: The effect of background sound on visual fidelity perception with varying texture resolution. Studies in Health Technology and Informatics, 173, 386–392.Google Scholar
  29. Rooney, P. (2012). A theoretical framework for serious game design: Exploring pedagogy, play and fidelity and their implications for the design process. International Journal of Game-Based Learning (IJGBL), 2(4), 41–60.CrossRefGoogle Scholar
  30. Shepherd, I. D. (2010). Get Real! -- The many faces of realism in virtual training. Post-Workshop Proceedings for - Crisis Management Training: design and use of online worlds, (pp. 62–74). Reykjavik.Google Scholar
  31. Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20(1), 21–53.CrossRefGoogle Scholar
  32. Slater, M., Linakis, V., Usoh, M., & Kooper, R. (1996). Immersion, presence and performance in virtual environments: An experiment with tri-dimensional chess. Proceedings of the ACM Symposium on Virtual Reality Software and Technology (pp. 163–172). ACM.Google Scholar
  33. Slater, M., Pankaj, K., Jesper, M., & Insu, Y. (2009). Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications, 29(3), 76–84.CrossRefGoogle Scholar
  34. Spinuzzi, C. (2005). The methodology of participatory design. Technical Communication, 52(2), 163–174.Google Scholar
  35. Tholey, G., Desai, J. P., & Castellanos, A. E. (2005). Force feedback plays a significant role in minimally invasive surgery: Results and analysis. Annals of Surgery, 241(1), 102.Google Scholar
  36. Toups, Z. O., Kerne, A., Hamilton, W. A., & Shahzad, N. (2011). Zero-fidelity simulation of fire emergency response: Improving team coordination learning. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1959–1968.Google Scholar
  37. Van der Meijden, O. A., & Schijven, M. P. (2009). The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review. Surgical Endoscopy, 23(6), 1180–1190.CrossRefGoogle Scholar
  38. Waller, D., Hunt, E., & Knapp, D. (1998). The transfer of spatial knowledge in virtual environment training. Presence, 7(2), 129–143.CrossRefGoogle Scholar
  39. Ware, C., & Mitchell, P. (2005). Reevaluating stereo and motion cues for visualizing graphs in three dimensions. Proceedings of the 2nd symposium on Applied perception in graphics and visualization (pp. 51–58). ACM.Google Scholar
  40. Weil, S. A., Hussain, T. S., Brunyé, T. T., Diedrich, F. J., Entin, E. E., Ferguson, W., et al. (2005). Assessing the potential of massive multi-player games to be tools for military training. Proceedings of the interservice/industry training, simulation, and education conference. I/ITSEC.Google Scholar
  41. Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225–240.CrossRefGoogle Scholar
  42. Yeh, Y.-Y., & Silverstein, L. D. (1992). Spatial judgments with monoscopic and stereoscopic presentation of perspective displays. Human Factors, 34(5), 583–600.CrossRefGoogle Scholar
  43. Ware, C., & Jessome, D. R. (1988). Using the bat: A six-dimensional mouse for object placement. IEEE Computer Graphics and Applications, 8(6), 65–70.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CENTRIC, Sheffield Hallam UniversitySheffieldUK

Personalised recommendations