Security in Body Networks: Watermark-Based Communications on Air-Gap Acoustic Channel

  • Simone SoderiEmail author
Conference paper
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


Wireless body area networks (WBANs) are becoming common to collect humans’ information. For example, patients’ vital signs in hospital scenarios. Recently, the interest of cyber-criminals to this information has gone up. Physical layer security is a standalone solution for low-power sensors network and WBAN. This paper describes the application of the watermark-based blind physical layer security (WBPLSec) to audio communications. Results indicate the WBPLSec as valuable technique for WBAN scenarios in which a sensor does not have any additional radio frequency (RF) interface but only a microphone and loudspeakers. Using this technique, the legitimate receiver creates a secure region around itself up to 50 cm. Due to the low data-rate, this technique is a valuable method for key exchange protocol between nodes with a good level of confidentiality.


Physical layer security Watermarking Ultrasonic Jamming Air-gap Covert channel WBAN 


  1. 1.
    Anderson, R.J.: Security Engineering - A Guide to Building Dependable Distributed Systems, 2nd edn. Wiley, New York (2008)Google Scholar
  2. 2.
    Arbia, D.B., Alam, M.M., Moullec, Y.L., Hamida, E.B.: Communication challenges in on-body and body-to-body wearable wireless networks — a connectivity perspective 5 (7 2017). CrossRefGoogle Scholar
  3. 3.
    Cox, I.J., Kilian, J., Leighton, F., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997). CrossRefGoogle Scholar
  4. 4.
    Deshotels, L.: Inaudible sound as a covert channel in mobile devices. In: 8th USENIX Workshop on Offensive Technologies (WOOT 14). USENIX Association, San Diego (2014).
  5. 5.
    Guri, M., Solewicz, Y.A., Daidakulov, A., Elovici, Y.: MOSQUITO: covert ultrasonic transmissions between two air-gapped computers using speaker-to-speaker communication. CoRR abs/1803.03422 (2018).
  6. 6.
    Hämäläinen, M., Li, X.: Recent advances in body area network technology and applications. Int. J. Wirel. Inf. Netw. 24, 63–64 (2017)CrossRefGoogle Scholar
  7. 7.
    Hanspach, M., Goetz, M.: On covert acoustical mesh networks in air. CoRR abs/1406.1213 (2014).
  8. 8.
    Harrison, W., Almeida, J., Bloch, M., McLaughlin, S., Barros, J.: Coding for secrecy: an overview of error-control coding techniques for physical-layer security. IEEE Signal Process. Mag. 30(5), 41–50 (2013). CrossRefGoogle Scholar
  9. 9.
    Harvest, Z., Bonnie, E.: SqueakyChat: ultrasonic communication using commercial notebook computers (2014). Google Scholar
  10. 10.
    IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks (Feb 2012).
  11. 11.
    Iinatti, J., Latva-aho, M.: A modified CLPDI for code acquisition in multipath channel. In: 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598), vol. 2, pp. F–6–F–10 vol.2 (Sep 2001).
  12. 12.
    Kramer, F., Starr, S., Wentz, L., National Defense University Press for Technology, National Security Policy: Cyberpower and National Security. Potomac Books, Washington (2009)Google Scholar
  13. 13.
    Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973). CrossRefGoogle Scholar
  14. 14.
    Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks. Wirel. Commun. 17(1), 51–58 (2010). CrossRefGoogle Scholar
  15. 15.
    Malvar, H., Florencio, D.: Improved spread spectrum: a new modulation technique for robust watermarking. IEEE Transactions on Signal Processing 51(4), 898–905 (2003). MathSciNetCrossRefGoogle Scholar
  16. 16.
    Otto, C., Milenković, A., Sanders, C., Jovanov, E.: System architecture of a wireless body area sensor network for ubiquitous health monitoring. J. Mob. Multimed. 1(4), 307–326 (2005). Google Scholar
  17. 17.
    Partala, J., Keränen, N., Särestöniemi, M., Hämäläinen, M., Iinatti, J., Jämsä, T., Reponen, J., Seppänen, T.: Security threats against the transmission chain of a medical health monitoring system. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), October 2013, pp. 243–248 (2013). Google Scholar
  18. 18.
    Ronquillo, J., Winterholler, J., Cwikla, K., Szymanski, R., Levy, C.: Data from: health it, hacking, and cybersecurity: national trends in data breaches of protected health information (2018). Google Scholar
  19. 19.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949). MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949). MathSciNetCrossRefGoogle Scholar
  21. 21.
    Smart body area networks (SmartBAN); system description. Tech. Rep. ETSI TR 103 394 V1.1.1, European Telecommunication Standard Institute (ETSI) (1 2018).
  22. 22.
    Soderi, S., Iinatti, J., Hämäläinen, M.: CLPDI algorithm in UWB synchronization. In: Proceedings of the 2003 International Workshop on UWB Systems, pp. 759–763 (2003)Google Scholar
  23. 23.
    Soderi, S., Mucchi, L., Hämäläinen, M., Piva, A., Iinatti, J.H.: Physical layer security based on spread-spectrum watermarking and jamming receiver. Trans. Emerg. Telecommun. Technol. 28(7) (2017).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.IEEE Senior MemberFirenzeItaly

Personalised recommendations