Skin Lesion Segmentation Ensemble with Diverse Training Strategies

  • Laura Canalini
  • Federico Pollastri
  • Federico BolelliEmail author
  • Michele Cancilla
  • Stefano Allegretti
  • Costantino Grana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11678)


This paper presents a novel strategy to perform skin lesion segmentation from dermoscopic images. We design an effective segmentation pipeline, and explore several pre-training methods to initialize the features extractor, highlighting how different procedures lead the Convolutional Neural Network (CNN) to focus on different features. An encoder-decoder segmentation CNN is employed to take advantage of each pre-trained features extractor. Experimental results reveal how multiple initialization strategies can be exploited, by means of an ensemble method, to obtain state-of-the-art skin lesion segmentation accuracy.


Deep learning Convolutional Neural Networks Transfer learning Skin lesion segmentation 



This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 825111, DeepHealth Project.


  1. 1.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  2. 2.
    Bi, L., Kim, J., Ahn, E., Kumar, A., Feng, D., Fulham, M.: Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 85, 78–89 (2019)CrossRefGoogle Scholar
  3. 3.
    Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected components labeling on DRAGs. In: International Conference on Pattern Recognition (2018)Google Scholar
  4. 4.
    Bolelli, F., Cancilla, M., Grana, C.: Two more strategies to speed up connected components labeling algorithms. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 48–58. Springer, Cham (2017). Scholar
  5. 5.
    Chandra, A., Yao, X.: Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7–9), 686–700 (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)
  7. 7.
    Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). CrossRefGoogle Scholar
  8. 8.
    Chung, D.H., Sapiro, G.: Segmenting skin lesions with partial-differential-equations-based image processing algorithms. IEEE Trans. Med. Imaging 19(7), 763–767 (2000)CrossRefGoogle Scholar
  9. 9.
    Codella, N., Gutman, D., Celebi, M., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018)Google Scholar
  10. 10.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)Google Scholar
  11. 11.
    Ganster, H., Pinz, P., Rohrer, R., et al.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)CrossRefGoogle Scholar
  12. 12.
    Gao, J., Zhang, J., Fleming, M.G.: A novel multiresolution color image segmentation technique and its application to dermatoscopic image segmentation. In: Proceedings 2000 International Conference on Image Processing, vol. 3, pp. 408–411. IEEE (2000)Google Scholar
  13. 13.
    Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)
  14. 14.
    Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)Google Scholar
  15. 15.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)Google Scholar
  16. 16.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  17. 17.
    Jafari, M.H., Nasr-Esfahani, E., Karimi, N., Soroushmehr, S.M.R., Samavi, S., Najarian, K.: Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma. Int. J. Comput. Assist. Radiol. Surg. 12(6), 1021–1030 (2017)CrossRefGoogle Scholar
  18. 18.
    Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)Google Scholar
  19. 19.
    Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)Google Scholar
  20. 20.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  21. 21.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Information Processing Systems, pp. 231–238 (1995)Google Scholar
  22. 22.
    Li, X., Yu, L., Fu, C.-W., Heng, P.-A.: Deeply supervised rotation equivariant network for lesion segmentation in dermoscopy images. In: Stoyanov, D., et al. (eds.) CARE/CLIP/OR 2.0/ISIC -2018. LNCS, vol. 11041, pp. 235–243. Springer, Cham (2018). Scholar
  23. 23.
    Li, Y., Yosinski, J., Clune, J., Lipson, H., Hopcroft, J.E.: convergent learning: do different neural networks learn the same representations? In: FE@ NIPS, pp. 196–212 (2015)Google Scholar
  24. 24.
    Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). Scholar
  25. 25.
    Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. arXiv preprint arXiv:1506.04579 (2015)
  26. 26.
    Pellacani, G., Grana, C., Seidenari, S.: Algorithmic reproduction of asymmetry and border cut-off parameters according to the abcd rule for dermoscopy. J. Eur. Acad. Dermatol. Venereol. 20(10), 1214–1219 (2006)CrossRefGoogle Scholar
  27. 27.
    Pollastri, F., Bolelli, F., Grana, C.: Improving Skin lesion segmentation with generative adversarial networks. In: 31st International Symposium on Computer-Based Medical Systems (2018)Google Scholar
  28. 28.
    Pollastri, F., Bolelli, F., Paredes, R., Grana, C.: Augmenting data with GANs to segment melanoma skin lesions. In: Multimed. Tools Appl. J. MTAP, 1–8 (2019)Google Scholar
  29. 29.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  30. 30.
    Rubegni, P., Ferrari, A., Cevenini, G., et al.: Differentiation between pigmented Spitz naevus and melanoma by digital dermoscopy and stepwise logistic discriminant analysis. Melanoma Res. 11(1), 37–44 (2001)CrossRefGoogle Scholar
  31. 31.
    Schmid, P.: Lesion detection in dermatoscopic images using anisotropic diffusion and morphological flooding. In: Proceedings 1999 International Conference on Image Processing, vol. 3, pp. 449–453. IEEE (1999)Google Scholar
  32. 32.
    Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)Google Scholar
  33. 33.
    Source Code of the Proposed Model. Accessed 21 July 2019
  34. 34.
    Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018).
  35. 35.
    Xue, Y., Xu, T., Huang, X.: Adversarial learning with multi-scale loss for skin lesion segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 859–863. IEEE (2018)Google Scholar
  36. 36.
    Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)CrossRefGoogle Scholar
  37. 37.
    Yuan, Y., Chao, M., Lo, Y.C.: Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv preprint arXiv:1703.05165 (2017)
  38. 38.
    Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. arXiv preprint arXiv:1701.07717 (2017)
  39. 39.
    Zortea, M., Flores, E., Scharcanski, J.: A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recogn. 64, 92–104 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laura Canalini
    • 1
  • Federico Pollastri
    • 1
  • Federico Bolelli
    • 1
    Email author
  • Michele Cancilla
    • 1
  • Stefano Allegretti
    • 1
  • Costantino Grana
    • 1
  1. 1.Dipartimento di Ingegneria “Enzo Ferrari”Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations