Nanotechnology-Empowered Smart Soldier

  • Narendra Kumar
  • Ambesh Dixit


A soldier, known in ancient times as a warrior, is the most important element of any military organization to fight and win a war. Earlier, soldiers used to engage in hand-to-hand fight, using weapons made from locally available materials such as stone, wood, and metals, for example, bronze, iron, etc. With the advent of gun powder, the firearms in the form of canons and hand-held guns came into existence and were used as the fighting weapons, leading to colonial rule in the world after seventeenth century. The weapon technologies based on propellants and explosives made tremendous progress, resulting in types of weapons such as artillery guns, tanks, and machine guns used during the two World Wars of the twentieth century, with a war theater extending from land to sea and air. Irrespective of the explosion in warfare technology, the importance of a soldier remained intact. The only change came in the form of his weapon, protection, and communication systems as part of his payloads. The emergence of nonstate actors, that is, terrorists, has further added to the woes of the modern soldier. He has to spend long time on field duties even during peace times with additional amount of loads in terms of rations, protective clothing, along with regular weapons, armor, communication, and surveillance equipment together with power packs to keep these units operational. The weight load carried by a soldier exceeds 60 kg, which is a matter of great concern. Efforts are ongoing to reduce carrier weight of a soldier by the way of designing lightweight weapons, ammunition, body armor, surveillance, and communication systems together with replacing batteries with energy-harvesting systems from renewable sources, such as solar energy, kinetic, and thermal energy produced by the human body. Nanomaterials and nanotechnologies appear to be highly promising in this regard.


Payloads Body armor Weapon systems Weight penalty Sights Machine guns Night vision devices (NVD) Software-driven radios (SDR) Load carrying equipment (LCE) All-purpose lightweight individual load carrying equipment (ALICE) Modular lightweight load carrying equipment (MOLLE) Soldier wearable integrated power equipment system (SWIPES) Nano-enabled smart textiles Energy harvesting Dynamic battle suit (DBS) 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    E. Groeneveld, Stone age tools. Ancient History Encyclopedia. Retrieved from (Dec 2016)
  7. 7.
    J.A.J. Gowlett, The discovery of fire by humans: a long and convoluted process. Philos. Trans. R. Soc. B Biol. Sci. 371(1696), 20150164 (2016)CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    I. Georganas, Weapons and warfare in early iron age thessaly. Mediter. Archaeol. Archaeom. 5(2), 63–74 (2005)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    T.G. Chondros, K.F. Miiidoris, C. Rossi, N. Zrnic, The evolution of the double horse chariot from the Bronze Age. FME Trans. 44, 229–236 (2016)Google Scholar
  15. 15.
    K. DeVries, R.D. Smith, Medieval Weapons (ABC-CLIO, Inc., Santa Barbara, 2007)Google Scholar
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    C. Gravett, R. Hook, Medieval Siege Warfare (Osprey Publishing, Oxford, 1990)Google Scholar
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
  25. 25.
  26. 26.
    M. I. Levy (ed.), War on Land: Britannica Guide to War (Britannica Education Publishing, New York, 2012)Google Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
    P. Cavallaro, Soft body armor: an overview of materials, manufacturing, testing, and ballistic impact dynamics, NUWC-NPT Technical Report 12,057 (2011).
  36. 36.
  37. 37.
    L-C. Alil, C. Barbu, S. Badea, F. Ilie, Aspects regarding the use of polyethylene fibers for personal armor, 2015v2/ConferenceProceedings/papers/ALIL_Luminita_Aspects_regarding_the_use_of_polyethylene.pdf
  38. 38.
    R. Orr, The history of the soldier’s load. Australian Army Journal vii, 67–88 (2010)Google Scholar
  39. 39.
  40. 40.
  41. 41.
    R. Orr, R. Pope Tactical load carriage: impacts and conditioning. (2017), Retrieved from
  42. 42.
  43. 43.
  44. 44.
  45. 45.
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50.
    Gao, Personal Protective Equipment; Report to US congressional committees (Gao-17-431, May 2017)Google Scholar
  51. 51.
  52. 52.
    T. Ulversoy, Software defined radios: challenges and opportunities. IEEE Commun. Surv. Tutor. 12(4), 531–550 (2010)CrossRefGoogle Scholar
  53. 53.
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
    K.A. Andersen, P.N. Grimshaw, R.M. Kelso, D.J. Bentley, Musculoskeletal lower limb injury risk in army populations. Sports Med. 2(22) (2016)Google Scholar
  59. 59.
  60. 60.
  61. 61.
  62. 62.
    N. Kumar, S. Kumbhat, Concise Concepts of Nanoscience and Nanomaterials (Scientific Publishers, Jodhpur, 2018)Google Scholar
  63. 63.
    Armed Forces Academy of General Milan Rastislav Stefanik (2016), ISBN 978-80-8040-529-8Google Scholar
  64. 64.
    Y.-M. Choi, M.G. Lee, Y. Jeon, Wearable biomechanical energy harvesting technologies. Energies 10(10), 1483–1517 (2017)CrossRefGoogle Scholar
  65. 65.
  66. 66.
    J. Sisto, Wearable technology soldiers of the future will generate their own power, Army Technol. Mag., 2, pp. 23–24, (Nov/Dec 2014)Google Scholar
  67. 67.
    C. Opoku, A.S. Dahiya, C. Oshman, F. Cayrel, G. Poulin-Vittrant, D. Alquier, N. Camara, Fabrication of ZnO nanowire based piezoelectric generators and related structures. Phys. Procedia 70, 858–862 (2015)CrossRefGoogle Scholar
  68. 68.
    J. Zhao, Z. You, A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14, 12497–12510 (2014)CrossRefGoogle Scholar
  69. 69.
    R.D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, T. Low, From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. SPIE Proc 7976, 48–66, Bellingham, WA (2011). Scholar
  70. 70.
    L.A. Kosyachenko (ed.), Solar Cells, vol. 1–4, (Intech Open, 2011), ISBN: 978-953-307-570-9Google Scholar
  71. 71.
    S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, K.-H. Kim, Quantum-sized nanomaterials for solar cell applications. Renew. Sust. Energ. Rev. 73, 821–829 (2017)CrossRefGoogle Scholar
  72. 72.
  73. 73.
    G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, M. Latreche, G. Czeremuszkin, M.R. Wertheimer, A new encapsulation solution for flexible organic solar cells. Thin Films 511, 349–353 (2006)CrossRefGoogle Scholar
  74. 74.
    H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, T. Someya, Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780–785 (2017)., Scholar
  75. 75.
    R. Liu, J. Wang, T. Sun, et al., Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett. 17, 4240–−4247 (2017)CrossRefGoogle Scholar
  76. 76.
    G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)CrossRefGoogle Scholar
  77. 77.
    T.M. Tritt, M.A. Subramanian, Materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188 (2006)CrossRefGoogle Scholar
  78. 78.
    J.F. Li, W.S. Liu, I.D. Zhou, M. Zhou, High performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010)CrossRefGoogle Scholar
  79. 79.
  80. 80.
  81. 81.
    G. Venugopal, A. Hunt, F. Alamgir, Nanomaterials for energy storage in lithium-ion battery applications. Mater. Matters 5(2), 42 (2010)Google Scholar
  82. 82.
    J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, J.M. Tour, Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7(7), 6001–6006 (2013)CrossRefGoogle Scholar
  83. 83.
    V.M. Castaño, R. Rodríguez, Nanotechnology for ballistic materials: from concepts to products. Mater. Technol. 47, 267–271 (2013)Google Scholar
  84. 84.
  85. 85.
    K. Mylvaganam, L.C. Zhang, Energy absorption capacity of carbon nanotubes under ballistic impact, Appl. Phys. Lett. 89, 123–127 (2006)Google Scholar
  86. 86.
    J.H. Lee, P.E. Loya, J. Lou, E.L. Thomas, Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346, 1092–1096 (2014). and Scholar
  87. 87.
    E. Lepore, F. Bosia, F. Bonaccorso, M. Bruna, S. Taioli, G. Garberoglio, A.C. Ferrari, N.M. Pugn, Spider silk reinforced by graphene or carbon nanotubes. 2D Mater. 4, 031013 (2017)CrossRefGoogle Scholar
  88. 88.
    Y. Mahajan, In pursuit of body armour. Nanotech Insights 1, 1–9 (2010)Google Scholar
  89. 89.
    K. Mylvaganam, L.C. Zhang, Ballistic resistance capacity of carbon nanotubes. Nanotechnology 18, 475701–475704 (2007)CrossRefGoogle Scholar
  90. 90.
  91. 91.
  92. 92.
  93. 93.
  94. 94.
  95. 95.
    J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions,
  96. 96.
    I. Lee, K. Lee, The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015)CrossRefGoogle Scholar
  97. 97.
    K.E. Friedl, M.J. Buller, W.J. Tharion, A.W. Potter, G.L. Manglapus, R.W. Hoyt, Real time physiological status monitoring (Rt-Psm): accomplishments, requirements, and research roadmap, USAriem Technical Note TN 16-02, (2016)Google Scholar
  98. 98.
    E. Fairbrass, L. Genders, G. Perez-Ortega, C. Swisher, V. Mittal, Value modeling and trade-off analysis of the tactical assault light operator suit. Ind. Syst. Eng. Rev. 5, 116–122 (2017)Google Scholar
  99. 99.
  100. 100.
    C. Hurley et al. Future vest technology empowering the future soldier. Soldier Mod. 18, 33 (2017)Google Scholar
  101. 101.
    M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014)CrossRefGoogle Scholar
  102. 102.
  103. 103.
    E.J. Leavline, D.A. Antony, G. Singh, S. Prasannanayagi, R. Kiruthika, A compendium of nano materials and their applications in smart nano textiles. Res. J. Nanosci. Nanotechnol. 5, 44–59 (2015)CrossRefGoogle Scholar
  104. 104.
    A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, A. Khademhosseini, S.H. Yun, Nanotechnology in textiles. ACS Nano 10(3), 3042–3068 (2016)CrossRefGoogle Scholar
  105. 105.
    S. Coyle, Y. Wu, K.-T. Lau, D. De Rossi, G. Wallace, D. Diamond, Smart nanotextiles: a review of materials and applications. MRS Bull. 32, 434–442 (2007)CrossRefGoogle Scholar
  106. 106.
  107. 107.
    V. Koncar (ed.), Smart Textiles and Their Applications (Elsevier, San Diego, 2016)Google Scholar
  108. 108.
  109. 109.
  110. 110.
    T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E.M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, L. Hu, Three-dimensional printed thermal regulation textiles. ACS Nano 11(11), 11513–11520 (2017)CrossRefGoogle Scholar
  111. 111.
    Po-Chun Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, W. Chun-Lan, A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3(11), e1700895 (2017)CrossRefGoogle Scholar
  112. 112.
    C. Li, M.M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S. Dou, C. Renduchintala, J. Thomas, Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 7, 13319 (2016)CrossRefGoogle Scholar
  113. 113.
  114. 114.
  115. 115.
    D. Kiserow, J. Joannopoulos, Developing revolutionary survivability technologies for soldiers, The Institute for Soldier Nanotechnologies,

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Ambesh Dixit
    • 2
  1. 1.Defence Laboratory Jodhpur (DRDO)JodhpurIndia
  2. 2.Department of Physics & Center for Solar Energy DepartmentIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations