Camouflage and Stealth Technology Based on Nanomaterials

  • Narendra Kumar
  • Ambesh Dixit


Acquisition of signatures using multispectral detectors of combat military targets, soldiers, strategic installations, etc. plays an important role in winning a war. There is a saying that “who spots first its adversaries is the winner.” Signature management by camouflaging of military targets is of great importance to save them from enemy’s attack. There are various techniques and materials to achieve effective camouflage but limited only in specific electromagnetic (EM) window. To overcome this limitation, there is a requirement to search for materials, which can be used in the form of surface coatings or structural components of the target to blend them with the surroundings. Furthermore, autonomous blending of a target with its surrounding in multispectral windows of EM spectrum is also a pressing requirement in camouflage/stealth. Various advanced materials have been investigated without much success to fulfil the requirement. The advent of nanotechnology and nanomaterials including the metamaterials demonstrates great potential to mitigate the gaps in camouflage/stealth application.


Camouflage Concealment and deception (CCD) Multispectral and hyperspectral sensors War theatres Signature management Radar absorbing structures Metamaterials Adaptive camouflage 


  1. 1.
    A. Levin, The Art of Camouflage in Nature, White Star, UK (2017)Google Scholar
  2. 2.
  3. 3.
    D. Akkaynak, L.A. Siemann, A. Barbosa, L.M. Mäthger, Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats? R. Soc. Open Sci. 4, 160824 (2017). Scholar
  4. 4.
    H.P. Conley, A History of Camouflage: Concealment and Deception, AD-216593 (1988)Google Scholar
  5. 5.
  6. 6.
    M. Stevens, S. Merilaita, Animal camouflage: current issues and new perspectives. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364, 423–427 (2009)CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    L. Talas, R.J. Baddeley, I.C. Cuthill, Cultural evolution of military camouflage. Phil. Trans. R. Soc. B 372, 20160351 (2017). Scholar
  11. 11.
    J.V. Ramanarao, Introduction to Camouflage and Deception (Defence Scientific Information & Documentation Centre (DESIDOC), Defence R&D Organisation, India, 1999)Google Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.
  24. 24.
    P. Briere, D. Sanschagrin, G. Roy, G. Couture, Advancement of the development of a screening smoke grenade, in Proceedings of the Smoke/Obscurants Symposium XVI, Laurel, MD (1992), pp 3–13Google Scholar
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.
    W.J. Padilla, D.N. Basov, D.R. Smith, Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006)CrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
    S.P. Mahulikar, H.R. Sonawane, G.A. Rao, Infrared signature studies of aerospace vehicles. Prog. Aerosp. Sci. 43, 218–245 (2007)CrossRefGoogle Scholar
  35. 35.
    S. Vass, Stealth technology deployed on the battlefield. AARMS Inf.Robot. 2(2), 257–269 (2003)Google Scholar
  36. 36.
    A.K. Sharma, S.K. Sharma, P. Vasistha, J.P. Mangalhara, Estimation of effect of emissivity on target detection through thermal imaging systems. Def. Sci. J. 67, 177–182 (2017)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    N. Kumar, S.R. Vadera, Stealth technology for air borne systems, Chapter 24, in Aerospace Materials and Material Technologies, Aerospace Materials, ed. by N. E. Prasad, R. J. H. Wanhill, vol. 1, (Springer, Singapore, 2017). ISBN: 978-981-10-2133-6Google Scholar
  39. 39.
    P.Y. Ufimtsev, Elementary edge waves and the physical theory of diffraction. Electromagnetics, 11, 125–160 (1991)Google Scholar
  40. 40.
  41. 41.
  42. 42.
  43. 43.
  44. 44.
  45. 45.
    L. de Folguercas, M.A. Alves, M.C. Rezende, Microwave absorption paints and sheets based on carbonyl iron and polyaniline: measurements and simulation of their properties. J. Aero. Tech. Manag. 2, 63–70 (2010)CrossRefGoogle Scholar
  46. 46.
    V. Birman, G.A. Kardomateas, Review of current trends in research and applications of sandwich structures. Composites B 142, 221–240 (2018)CrossRefGoogle Scholar
  47. 47.
  48. 48.
  49. 49.
  50. 50.
  51. 51.
  52. 52.
    N. Kumar, S. Kumbhat, Concise Concepts of Nanoscience and Nanomaterials (Scientific Publishers, India, 2018)Google Scholar
  53. 53.
    Y. Wang, T. Li, et al., Research progress on nanostructured radar absorbing materials. Energy Power Eng 3, 580–584 (2011)CrossRefGoogle Scholar
  54. 54.
    K. Zhou, J. Deng, L. Yin, et al., Microwave absorbing properties of La0.8Ba0.2MnO3 nano particles. Trans. Nonferrous Metals Soc. China 17, 947–950 (2007)CrossRefGoogle Scholar
  55. 55.
    R. Sharma, R.C. Agarwala, V. Agarwala, Development of radar absorbing nano crystals by microwave irradiation. Mater. Lett. 62, 2233–2236 (2005)CrossRefGoogle Scholar
  56. 56.
    R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 2373–2433 (2012)Google Scholar
  57. 57.
    R. Sharma, R.C. Agarwala, V. Agarwala, Development of electro less (Ni-P)/BaNi0.4Ti0.4Fe11.2O19 nanocomposite powder for enhanced microwave absorption. J. Alloys Compd. 467, 357–365 (2009)CrossRefGoogle Scholar
  58. 58.
    H.-M. Xiao, X.-M. Liu, S.-Y. Fu, Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites. Compos. Sci. Technol. 66, 2003–2008 (2006)CrossRefGoogle Scholar
  59. 59.
    V. Gupta, M.K. Patra, A. Shukla, S. Songara, R. Jani, S.R. Vadera, N. Kumar, Synthesis and investigations on microwave absorption properties of core–shell FeCo(C) alloy nanoparticles. Sci. Adv. Mater. 6(1–7), 1196 (2014)CrossRefGoogle Scholar
  60. 60.
    X. Sun, M. Gao, C. Li, Y. Wu, Microwave Absorption Characteristics of Carbon Nanotubes;
  61. 61.
    V.A. Silvaa, L. Folguerasb, et al., Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials. Mater. Res. 16(6), 1299–1308 (2013)CrossRefGoogle Scholar
  62. 62.
    H. Lin, H. Zhu, H. Guo, L. Yu, Microwave-absorbing properties of Co-filled carbon nanotubes. Mater. Res. Bull. 43, 2697–2702 (2008)CrossRefGoogle Scholar
  63. 63.
    V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50, 2202–2208 (2012)CrossRefGoogle Scholar
  64. 64.
    L. Valentini, S. Bittolo Bon, M. Hernandez, M.A. Lopez-Manchad, N.M. Pugno, Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Compos. Sci. Technol. 166, 109–114 (2018)CrossRefGoogle Scholar
  65. 65.
    T.V. Varghese, H. Ajith Kumar, S. Anitha, S. Ratheesh, R.S. Rajeev, V. Lakshmana Rao, Reinforcement of acrylonitrile butadiene rubber using pristine few layer graphene and its hybrid fillers. Carbon 61, 476–486 (2013)CrossRefGoogle Scholar
  66. 66.
    J. Zhao, J. Lin, H. Fan, Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe3O4 nanocomposites. RSC Adv. 5, 19345–19352 (2015)CrossRefGoogle Scholar
  67. 67.
    L. Wang, X. Jia, Y. Li, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2, 14940–14946 (2014)CrossRefGoogle Scholar
  68. 68.
    V.L. Soethe, E.L. Nohara, L.C. Fontane, M.C. Rezende, Radar absorbing materials based on titanium thin film obtained by sputtering technique. J. Aerosp. Technol. Manag. 3, 279–286 (2011)CrossRefGoogle Scholar
  69. 69.
  70. 70.
    N. Ishii, Y. Yasaka, U.S. Patent No 6823816 (2004). Available at:
  71. 71.
  72. 72.
  73. 73.
    W.-H. Choi, J.-B. Kim, J.-h. Shin, et al., Circuit-analog (CA) type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication. Compos. Sci. Technol. 105, 96–1021 (2014)CrossRefGoogle Scholar
  74. 74.
    C. Wang, M. Chen, H. Lei, K. Yao, H. Li, W. Wen, D. Fang, Radar stealth and mechanical properties of a broadband radar absorbing structure. Composites B 123, 19–27 (2017)CrossRefGoogle Scholar
  75. 75.
    J.H. Shin, H.K. Jang, W.H. Choi, T.H. Song, C.G. Kim, W.Y. Lee, Design and fabrication of RAS with Graphene added Kevlar fiber reinforced composite, in 18th International Conference on Composite Materials (
  76. 76.
    C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012)Google Scholar
  77. 77.
    Y. Pang, Y. Li, M. Yan, D. Liu, J. Wang, Z. Xu, S. Qu, Hybrid meta surfaces for microwave reflection and infrared emission reduction. Opt. Express 26, 11950–11958 (2018)CrossRefGoogle Scholar
  78. 78.
  79. 79.
  80. 80.
  81. 81.
    J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang, X. Zhang, Nano fibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019)CrossRefGoogle Scholar
  82. 82.
    M. Stevens, S. Merilaita (eds.), Animal Camouflage: Mechanisms and Function (Cambridge University Press, 2011)Google Scholar
  83. 83.
  84. 84.
  85. 85.
    C.M. Lampert, Chromogenic smart materials. Mater. Today 7, 28–35 (2004)CrossRefGoogle Scholar
  86. 86.
    J. Ge, L. He, Y. Hu, Y. Yin, Magnetically induced colloidal assembly into field-responsive photonic structures. Nanoscale 3, 177–183 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Ambesh Dixit
    • 2
  1. 1.Defence Laboratory Jodhpur (DRDO)JodhpurIndia
  2. 2.Department of Physics & Center for Solar Energy DepartmentIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations