Nanotechnology-Enabled Management of Chemical, Biological, Radiological, and Nuclear Threats

  • Narendra Kumar
  • Ambesh Dixit


Chemical, biological, radiological, and nuclear (CBRN) weapons, also known as weapons of mass destruction (WMD), have become a real threat despite international ban treaties. These CBRNs can be distinguished by conventional and directed-energy weapons as they create colossal damage to all the living beings and the buildings without any discrimination. Management of CBRN weaponry in terms of detection, decontamination, and protection of living beings, particularly humans, is a very important technological challenge. Nanotechnology is emerging fast to manage threats of such devastative weapons in an efficient way. The underlying reason being the reduced size of nanomaterials leading to enhanced high chemical reactivity to decompose many chemical weapon agents (CWAs), adsorption of BWAs, and decontamination of radiological hazards as well. Further, the quantum confinement, leading to energy-efficient fluorescent semiconducting nanostructures, enables detection of many of these CBRN even in trace amounts.


Chemical–Biological–Radiological–Nuclear (CBRN) Weapons of Mass Destruction (WMD) Dirty bombs Detection Decontamination Protection Sensors Metal-organic frameworks 


  1. 1.
  2. 2.
    J.R. Bhardwaj, Chemical, biological, radiological, and nuclear disaster management. J. Pharm. Bioallied Sci. 2, 157–158 (2010)CrossRefGoogle Scholar
  3. 3.
    (a), (b) B. Unal, S. Aghlani, Use of Chemical,Biological, Radiologicaland Nuclear Weaponsby Non-State Actors, Emerging trends andrisk factors; (Lloyd’s Emerging Risk Report – 2016), Chatham House, The Royal Institute of International Affairs,
  4. 4.
  5. 5.
    D. Evison, D. Hinsley, P. Rice, Chemical weapons. BMJ 324, 332–335 (2002)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    (a) K. Ganesan, S.K. Raza, R. Vijayaraghavan, Chemical warfare agents. J. Pharm. Bioallied. Sci. 2, 166–178 (2010); (b) R. Sferopoulos, Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-Off-The-Shelf ItemsDSTO-GD-0570Google Scholar
  11. 11.
    Y. Sun, K.W. Ong, Detection Technologies for Chemical Warfare Agents and Toxic Vapors (CRC PRESS, Baton Rouge, 2004)CrossRefGoogle Scholar
  12. 12.
    Institute of Medicine, Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response (The National Academies Press, Washington, DC, 1999). Scholar
  13. 13.
    Y. Seto, On-site detection of chemical warfare agents, Chapter 53, in Handbook of Toxicology and Chemical Warfare Agents, (Academic Press, UK, 2009), pp. 813–825Google Scholar
  14. 14.
    G.R. Asbury, W. Siems, H.H. Hill Jr., Separation and identification of some chemical warfare degradation products using electrospray high resolution ion mobility spectrometry with mass selected detection. Anal. Chim. Acta 404, 273–283 (2000).; S. Coutant, Features, Chemical Warfare Agent Detection and Personal Protection. Jane’s Defence Weekly (1999)CrossRefGoogle Scholar
  15. 15.
    H. Borsdorf, G.A. Eiceman, Ion mobility spectrometry, principles and applications. Appl. Spectrosc. Rev. 41, 323–375 (2006).; https:GID-3 Chemical Warfare Agent Detection System. In Smiths DetectionCrossRefGoogle Scholar
  16. 16.
    M.E. Kosal, The Basics of Chemical and Biological Weapons Detectors (Center for Nonproliferation Studies, USA, 2003)Google Scholar
  17. 17.
  18. 18.
    J. McKenna, E.S. Dhummakupt, T. Connell, P.S. Demond, D.B. Miller, J.M. Nilles, N.E. Manicke, T. Glaros, Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry. Analyst 142, 1442 (2017)CrossRefGoogle Scholar
  19. 19.
    S.K. Dangwal, A spectrophotometric method for determination of phosgene in air. Ind. Health 32, 41–47 (1994)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    V. Kumar, R. Goel, R. Chawla, M. Silambarasan, R.K. Sharma, b. Chemical, radiological, and nuclear decontamination: Recent trends and future perspective. J. Pharm. Bioallied Sci.J Pharm Bioallied Sci. 2, 220–238 (2010)CrossRefGoogle Scholar
  22. 22.
    M.R. Hurst, E. Wilkins, Chemical and biological warfare: Should rapid detection techniques be researched to dissuade usage? A review. Am. J. Appl. Sci. 2, 796–805 (2005)CrossRefGoogle Scholar
  23. 23.
    C. Dragolici, F. Dragolici, Introduction in Means and Methods Used in Chemical, Biological, Radiological, and Nuclear Decontamination,
  24. 24.
    Y.-C. yang, J.A. Baker, J.R. Ward, Decontamination of chemical warfare agents. Chem. Rev. 92, 1729–1743 (1992)CrossRefGoogle Scholar
  25. 25.
    N.B. Munro, S.S. Talmage, G.D. Griffin, L.C. Waters, A.P. Watson, J.F. King, V. Hauschild, The source, fate, and toxicity of chemical warfare agent degradation products. Environ. Health Perspect. 107, 933–974 (1999)CrossRefGoogle Scholar
  26. 26.
    K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Destruction and detection of chemical warfare agents. Chem. Rev. 111, 5345–5403 (2011)CrossRefGoogle Scholar
  27. 27.
    R. Bogan, H.J. Maas, T. Zimmermann, Chemical stability of reactive skin decontamination lotion (RSDL). Toxicol. Lett. 293, 264–268 (2018)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Evaluation Report Enzymatic Decontamination of Chemical Warfare Agents, EPA 600-R-12-033 (2013)Google Scholar
  30. 30.
  31. 31.
    V. Pal, M.K. Sharma, S.K. Sharma, A.K. Goel, Biological warfare agents and their detection and monitoring techniques. Def. Sci. J. 66, 445–457 (2016)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    J.D. Hybl, S.M. Tysk, S.R. Berry, M.P. Jordan, Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl. Opt. 45, 8806–8814 (2006)CrossRefGoogle Scholar
  34. 34.
    J.L. Gottfried, F.C. De Lucia Jr., C.A. Munson, et al., Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy. Appl. Spectrosc. 62, 353–363 (2008)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    A.T. Lebedev, Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents. Toxicol. Appl. Pharmacol. 207, 451–458 (2005)CrossRefGoogle Scholar
  37. 37.
  38. 38.
  39. 39.
    S. SIqbal, M.W. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, J.P. Chambers, A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15, 549–578 (2000)CrossRefGoogle Scholar
  40. 40.
    E. Fulton, H.G. Thompson, Fluorogenic hand-held immunoassay forthe identification of ricin: rapid analyte measurement platform. J. Immunoassay Immunochem. 28, 227–241 (2007)CrossRefGoogle Scholar
  41. 41.
    L. Liu, X. Zhou, J.S. Wilkinson, P. Hua, B. Song, H. Shi, Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and analysis. Sci. Rep. 7, 36655 (2017)Google Scholar
  42. 42.
    A. Sassolini, G.M. Ludonici, V. Gabbarini, O. Cinciarelli, A review of techniques for the detection of biological warfare agents. Defence S&T Technical Bulletin 8, 17–26 (2015)Google Scholar
  43. 43.
    D.P. Greenwood et al., Optical techniques for detecting andIdentifying biological-warfare agents. Proc. IEEE 97(6), 971–989 (2009)CrossRefGoogle Scholar
  44. 44.
    A. Reenen, A.M. de Jong, J.M.J. den Toonder, M.W.J. Prins, Integrated lab-on-chip biosensing systems based on magnetic particle actuation – A comprehensive review. Lab Chip 14, 1966–1986 (2014)CrossRefGoogle Scholar
  45. 45.
    J.R. LawsonandT, L. Jarboe, Aid for decontamination of fire and rescue service protective clothing and equipment after chemical, biological, and radiological exposures. Natl. Inst. Stand. Technol. Spec. Publ. USA 981, 97 (2002).
  46. 46.
    B. NiederWohrmeir, A. Richardt, Decontamination of biological warfare agents, in De-contamination of Warfare Agents, ed. by A. Richardt, M. Blum, (Wiley, 2008)Google Scholar
  47. 47.
    R.J. Hawley, E.M. Eitzen Jr, Biological weapons—A primer for microbiologists. Annu. Rev. Microbiol. 55, 235–253 (2001)CrossRefGoogle Scholar
  48. 48.
    M.D. Tucker, Ph.D., Sandia National Laboratories, 505-844-7264,, DF-200: An Enhanced Formulation for Decontamination and Mitigation of CBWAgents, Biological Pathogens, and Toxic Industrial Chemicals,
  49. 49.
    H.W. Herrmann, I. Henins, J. Park, G.S. Selwyn, Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys. Plasmas 6, 2284 (1999)CrossRefGoogle Scholar
  50. 50.
    Dirty Bombs and the Response to a Dirty Bomb Explosion,; Radiological Dispersal Devices (RDDs),
  51. 51.
    Report No. 161 I – Management of Persons Contaminated With Radionuclides (2008),
  52. 52.
    J.M. Smith, A. Ansari, F.T. Harper, Hospital management of mass radiological casualties: reassessing exposures from contaminated victims of an exploded radiological dispersal device. Health Phys. 89, 513 (2005)CrossRefGoogle Scholar
  53. 53.
    Radiological Dispersal Device (RDD) Response Guidance: Planning for the First 100 Minutes, November 2017,
  54. 54.
    Nuclear Detonation: Weapons, Improvised Nuclear Devices,
  55. 55.
    S. Glasstone, P.J. Dolan, The Effects of Nuclear Weapons - U.S. Military, Department of Defense, Energy Research and Development Administration, Smashwords Edition, Progressive Management, USA (2011)Google Scholar
  56. 56.
    Health and Safety Planning Guide for Protecting Responders Following a Nuclear Detonation, 2016,
  57. 57.
    a: G.F. Knoll, Radiation Detection and Measurement, 4 edn., (Wiley, 2010); b: Radiation Detection and Survey Devices,
  58. 58.
    S.-W. KWAK, S.-S. CHANG, H.-S. YOO, Development of mobile radiation detection system against nuclear terrorism in Korea. Progress Nucl Sci Technol 1, 252–254 (2011)CrossRefGoogle Scholar
  59. 59.
    C. Vijayaraghavan, D. Thirumalaivasan, R. Venkatesan, A study on the effect of 10 kT yield nuclear blast in a hypothetical city using GIS. Int. J. Curr. Res. 3, 57–63 (2011)Google Scholar
  60. 60.
    M.K. Patra, K. Manzoor, M. Manoth, S.C. Negi, S.R. Vadera, N. Kumar, Nanotechnology applications for chemical and biological sensors. Def. Sci. J. 58, 636–649 (2008)CrossRefGoogle Scholar
  61. 61.
    Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012)CrossRefGoogle Scholar
  62. 62.
    R.S. Vemuri, P.D. Armatis, J. Rao Bontha, B.P. McGrail, R.K. Motkuri, An overview of detection and neutralization of chemical warfare agents using metal organic frameworks. J. Bioterror. Biodef. 6, 137 (2015)Google Scholar
  63. 63.
    L.C. Wang, K.T. Tang, C.T. Kuo, C.L. Ho, S.R. Lin, Y. Sung, C. P. Chang, A portable electronic nose system with chemiresistor sensors to detect and distinguish chemical warfare agents. Proceedings of the 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, 18–21 Oct 2009,
  64. 64.
    H.J. Kim, J.H. Lee, H. Lee, J.H. Lee, J.H. Lee, J.H. Jung, J.S. Kim, A mesoporous, silica-immobilized-nanoparticle colorimetric chemosensor for the detection of nerve agents. Adv. Mater. 21, 4035–4040 (2011)Google Scholar
  65. 65.
    F. Patolsky, C.M. Lieber, Nanowire nanosensors. Materials Today 8, 20–28 (2005).; Pranav Ambhorkar, Zongjie Wang, HyuonghoKo, Sangmin Lee, Kyo-in Koo, Keekyoung Kim, Dong-il (Dan) Cho, Nanowire-based biosensors: From growth to applications, Micromachines, 9, 679 (2018)CrossRefGoogle Scholar
  66. 66.
    Y.B. Hahn, R. Ahmad, N. Tripathy, Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 48(84), 10369 (2012)CrossRefGoogle Scholar
  67. 67.
    Y.V. Stebunov, D.I. Yakubovsky, D.Y. Fedyanin, A.V. Arsenin, V.S. Volkov, Superior sensitivity of copper-based plasmonic biosensors. Langmuir 34(15), 4681–4687 (2018)CrossRefGoogle Scholar
  68. 68.
    C. Bisio, F. Carniato, C. Palumbo, S.L. Safronyuk, M.F. Starodub, A.M. Katsev, L. Marchese, M. Guidotti, Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catal. Today 277, 192 (2016)CrossRefGoogle Scholar
  69. 69.
    K.J. Klabunde, L. Erickson, O. Koper, R. Richards, Review of nanoscale materials in chemistry: Environmental applications, Chapter 1, in Nanoscale Materials in Chemistry: Environmental Applications, ACS Symposium Series, vol. 1045, (2010), pp. 1–13. and Scholar
  70. 70.
    S. Sundarrajan, A.R. Chandrasekaran, S. Ramakrishna, An update on nanomaterials-based textiles for protection and decontamination. J. Am. Soc. 93, 3955–3975 (2010)Google Scholar
  71. 71.
    M.B. Mitchell, V.N. Sheinker, E.A. Mintz, Adsorption and decomposition of dimethyl Methylphosphonate on metal oxides. J. Phys. Chem. B 101, 11192–11203 (1997)CrossRefGoogle Scholar
  72. 72.
    M. Foxe, G. Lopez, I. Childres, R. Jalilian, C. Roecker, J. Boguski, I. Jovanovic, Y.P. Chen, Detection of ionizing radiation using graphene field effect transistors, IEEE, 2009Google Scholar
  73. 73.
    C.H. Baker, Radiation protection with nanoparticles. JSM Nanotechnol. Nanomed. 2, 1019 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Ambesh Dixit
    • 2
  1. 1.Defence Laboratory Jodhpur (DRDO)JodhpurIndia
  2. 2.Department of Physics & Center for Solar Energy DepartmentIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations