Advertisement

Nanotechnology-Driven Explosives and Propellants

  • Narendra Kumar
  • Ambesh Dixit
Chapter

Abstract

The turning point in the history of armaments was the discovery and the realization that gun powder can be used in warfare. A variety of armaments, starting from small firearms, cannons, artillery guns, grenades to missiles, and propellants and explosives, have been developed and used in various small and big wars from different types of ground, aerial, and naval platforms over time. Propellants in solid, liquid, and gel forms have been developed to propel missiles, rockets as well as space crafts. Explosives, on the other hand, are mostly developed in a solid state exhibiting moderate to severe degree of devastation. Nanomaterials and nanotechnology are now finding a prominent space in the area of propellants and explosives, in both the cases to enhance their propulsion and devastation capabilities, respectively. Nanometals such as nano-Al and nano-B clusters have emerged as powerful explosive ingredients, whereas nanothermites have proven to act as very effective and safe nanoenergy materials (nEMs) for explosives and propellants. Furthermore, polymer-bonded nanoexplosives are considered for their safe handling including storage and transportation.

Keywords

Explosives Propellants Detonation Deflagration Polymer-Bonded Explosives Nanometal Nano-Aluminum Nanothermites 

References

  1. 1.
  2. 2.
    J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH Verlag GmbH & Co, Weinheim, 2010). KGaA(ISBN:9783527326105)CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    W.L. Bell, Chemistry of air bags. J. Chem. Educ. 67, 61 (1990)CrossRefGoogle Scholar
  9. 9.
    H. Cutler, E. Spector, Air bags and automobile recycling. ChemTech 23, 54–55 (1993)Google Scholar
  10. 10.
    J.A. Conkling, Pyrotechnics. Sci. Am. 263, 96–105 (1990)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    F.J. Arnáiz, R. Aguado, S. Arnáiz, Microscale thermite reaction. J. Chem. Educ. 75, 1630 (1998)CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    W.F. Kieffer, J.M. Resko, Colored signal smokes. J. Chem. Educ. 22, 385 (1945)CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    J.H. Shinn, S.A. Martins, P.L. Cederwall, Smokes and obscurants: A health and environmental effects data base assessment, UCID—20931, https://www.osti.gov/servlets/purl/6068996
  19. 19.
    A.B. Ray, Production of colored smoke signals. Ind. Eng. Chem. 18, 10–17 (1926)CrossRefGoogle Scholar
  20. 20.
    J. Akhavan, The Chemistry of Explosives, 3rd edn. (RSC Publishing, Cambridge, 2011). (ISBN-10: 1849733309)Google Scholar
  21. 21.
    H. Ellern, Military and CivilianPyrotechnics (Chemical Publishing Company Inc., New York, 1968)Google Scholar
  22. 22.
    D.T. Bodeau, Chapter 9, Military Energetic Materials:Explosives and Propellants, in Occupational Health: The Soldier and the Industrial Base, ed. by P. David, C. G. Joel, (U. S. Army, Office of the Surgeon General, Washington, DC, 1993). (ASIN: B000O0EH32)Google Scholar
  23. 23.
    A. Davenas, Development of modern solid propellants. J. Propuls. Power 19, 1108–1128 (2003)CrossRefGoogle Scholar
  24. 24.
    H.F.R. Schoeyer, A.J. Schnorhk, P.A.O.G. Korting, P.J. van Lit, J.M. Mul, G.M.H.J.L. Gadiot, J.J. Meulenbrugge, High-performance propellants based on hydrazinium nitroformate. J. Propuls. Power 11, 856–869 (1995)CrossRefGoogle Scholar
  25. 25.
    G. Lengellé, J. Duterque, J.F. Trubert, Combustion of Solid Propellants, Paper presented at the RTO/VKI Special Course on Internal aerodynamics in solid rocket propulsion, held in Rhode-Saint-Genèse, Belgium, 27–31 May 2002, and published in RTO-EN-023, https://web.stanford.edu/~cantwell/AA283_Course_Material/Combustion_of_Solid_Propellants.pdf
  26. 26.
    G.P. Sutton, O. Biblarz, Rocket Propulsion Elements, 7th edn., (Chapter 7) (John Wiley & Sons, Hoboken, 2001)Google Scholar
  27. 27.
    J. A. Kent (ed.), Riegel’s Handbook of Industrial Chemistry, Part 1, 9th edn. (Springer-Science+Business Media, New York, 1992)Google Scholar
  28. 28.
    P. Folly, P. Mader, Propellant chemistry. Chimia 58, 374–382 (2004)CrossRefGoogle Scholar
  29. 29.
    D. Frem, A reliable method for predicting the specific impulse of chemical propellants. J. Aerosp. Technol. Manag. 10, e3318 (2018).  https://doi.org/10.5028/jatm.v10.945CrossRefGoogle Scholar
  30. 30.
    Table 1 in Space Handbook: Astronautics and its Applications, Report AD-A286 688, https://apps.dtic.mil/dtic/tr/fulltext/u2/a286688.pdf and Table 1 in Propellants from https://history.nasa.gov/conghand/propelnt.htm
  31. 31.
    H.K. Ciezki, C. Kirchberger, A. Stiefel, P. Kröger, P. Caldas Pinto, J. Ramsel, K.W. Naumann, J. Hürttlen, U. Schaller, A. Imiolek, and V. Weiser, Overview on the German Gel Propulsion Technology Activities: Status 2017 and Outlook, 7th European Conference for Aeronautics and Space Sciences (EUCASS), https://www.eucass.eu/doi/EUCASS2017-253.pdf
  32. 32.
  33. 33.
  34. 34.
    W.G Proud, Ignition and detonation in energetic materials: An introduction, STO-EN-AVT-214, https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-AVT-214/EN-AVT-214-03.pdf
  35. 35.
    W.C. Davis, High explosives: The interaction of chemistry and mechanics. Los Alomos Science 2, 48–75, http://shepherd.caltech.edu/EDL/projects/JetA/reports/BillDavisHE.pdf
  36. 36.
    K. Venkataramana, R.K. Singh, A. Deb, H.S. Kushwaha, Blast protection of infrastructure with fluid filled cellular polymer foam. Procedia Engineering 173, 547–554 (2017)CrossRefGoogle Scholar
  37. 37.
    J.A. Bumpus, A theoretical investigation of the ring strain energy, destabilization energy, and heat of formation of CL-20. Adv. Phys. Chem. 2012, 175146 (2012).  https://doi.org/10.1155/2012/175146CrossRefGoogle Scholar
  38. 38.
    Report on “Safety and Performance Tests for the Qualification of Explosives (High Explosives, Propellants, and Pyrotechnics), Report No. MIL-STD-1741A (11 December 2001), http://everyspec.com/MIL-STD/MIL-STD-1700-1799/download.php?spec=MIL-STD-1751A.020891.PDF
  39. 39.
    H.G. Ang, S. Pisharath, Energetic Polymers: Binders and Plasticizers for Enhancing Performance (Wiley-VCH, Weinheim, 2012)Google Scholar
  40. 40.
    A.Provatas, Characterization and binder studies of the energetic plasticizer – GLYN Oligomer, Report No. DST-TR-1422, https://pdfs.semanticscholar.org/6374/951485dfe9c22c5cd4b382a99db5ec7bcc98.pdf?_ga=2.106704011.928798363.1556041421-768172741.1556041421
  41. 41.
    T. Cheng, Review of novel energetic polymers and binders–high energy propellantingredients for the new space race. Des. Monomers Polym. 22, 54–65 (2019)CrossRefGoogle Scholar
  42. 42.
    S. Bhattacharya, A. K. Agarwal, T. Rajagopalan, V. K. Patel (eds.), Nano-Energetic Materials (Springer, Singapore, 2019)Google Scholar
  43. 43.
    I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, A. S. Rogachev (eds.), Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, History, Theory, Technology, and Products (Elsevier, Amsterdam, 2017)Google Scholar
  44. 44.
    C. Rossi, Al-based Energetic Nanomaterials, Design, Manufacturing, Properties and Applications, vol 2 (ISTE Ltd/John Wiley & Sons, Inc, London/Hoboken, 2015)CrossRefGoogle Scholar
  45. 45.
    V. E. Zarko, A. A. Gromov (eds.), Energetic Nanomaterials: Synthesis, Characterization and Applications (Elsevier, San Diego, 2016)Google Scholar
  46. 46.
    S. Kulshrestha, Nanotechnology Massive Potential to Disrupt Military Applications in Nanotechnology – Applications in the Navy. SP’s Military Year Book (2013), https://skulshrestha.net/2019/02/20/nanotechnology-massive-potential-to-disrupt-military-applications/
  47. 47.
    S. Kulshrestha, Nanoenergetic Materials (nEMs) in Conventional Ammunition, https://www.claws.in/1571/nanoenergetic-materials-nems-in-conventional-ammunition-sanatan-kulshrestha.html
  48. 48.
  49. 49.
    N.H. Yen, L.Y. Wang, Reactive metals in explosives. Propellants Explos. Pyrotech. 37, 143–155 (2012)CrossRefGoogle Scholar
  50. 50.
    R.W. Conner, D.D. Dlott, Comparing boron and aluminum nanoparticle combustion in teflonusing ultrafast emission spectroscopy. J. Phys. Chem. C 116, 2751–2760 (2012)CrossRefGoogle Scholar
  51. 51.
    T. G. Manning, N. M. Masoud, D.P. Thompson, J.R. Luman, B. Wehrman, K. K. Kuo, R.A. Yetter and H. A. Bruck, Report Effects of Nano-sized Energetic Ingredients in High Performance Solid Gun Propellants, https://apps.dtic.mil/dtic/tr/fulltext/u2/a481943.pdf
  52. 52.
    H. Wang, G. Jian, J. B. DeLisio, and M. R. Zachariah, Microspheres Composite of Nano-Al and Nanothermite: An Approach to Better Utilization of Nanomaterials, 52nd Aerospace Science Meeting, 13–17 January 2014, National Harbor, Maryland, AIAA SciTech, AIAA 2014–0647Google Scholar
  53. 53.
  54. 54.
    T.M. Tillotson, A.E. Gash, R.L. Simpson, L.W. Hrubesh, J.H. Satcher Jr., J.F. Poco, Nanostructured energetic materials using sol-gelmethodologies. J. Non-Cryst. Solids 285, 338–345 (2001)CrossRefGoogle Scholar
  55. 55.
    Nanoscale chemistry yields better explosives, https://str.llnl.gov/str/RSimpson.html
  56. 56.
    Nanostructured Energetic Materials with Sol-gel Methods Alexander E. Gash, Joe H. Satcher Jr., Randall L. Simpson, Brady J. Clapsaddle, Report No. UCRL-PROC-201186Google Scholar
  57. 57.
    Kevin Ryan, The explosive nature of nanothermite, http://digwithin.net/2011/06/19/the-explosive-nature-of-nanothermite/
  58. 58.
    T. Chen, W. Li, W. Jiang, G. Hao, L. Xiao, X. Ke, J. Liu, H. Gao, Preparation and characterization of RDX/BAMO-THF energetic nanocomposites. J. Energ. Mater. 36, 424–434 (2018)CrossRefGoogle Scholar
  59. 59.
    M. Fisher. In Situ Manufacturing of Polymer Nanocomposites for Energetic Applications, https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/situ-manufacturing-polymer-nanocomposites
  60. 60.
    Reid, D., E. Petersen, and S. Seal. Development of Plateau Burning Composite Propellant for Ejection Seat CAD/PAD Systems CAD/PAD Technical Exchange Workshop, May 2016Google Scholar
  61. 61.
    S. Kulshrestha, Nanoenergetic Materials (nEMs) in Conventional Ammunition, http://www.indiandefencereview.com/nanoenergetic-materials-nems-in-conventional-ammunition/
  62. 62.
    A. Prakash, A.V. McCormick, M.R. Zachariah, Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core−Shell Nanostructure. Nano Letters 5, 1357–1360 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Ambesh Dixit
    • 2
  1. 1.Defence Laboratory Jodhpur (DRDO)JodhpurIndia
  2. 2.Department of Physics & Center for Solar Energy DepartmentIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations