Neurobiology of Empathy

  • Michelle Trieu
  • Adriana E. FosterEmail author
  • Zimri S. Yaseen
  • Courtnie Beaubian
  • Raffaella Calati


Until late last century, empathy remained an abstract concept confined to the realms of social science and philosophy. Studies in neuroscience have demonstrated that the brain can understand and share emotions of others without having the same experiences. Using magnetic resonance imaging (MRI) coupled with self-assessment and tasks that allow evaluation of empathy has helped to map the areas of the brain that are recruited in response to others’ actions and emotions. Furthermore, progress in the neurobiology of empathy shows that facets of empathy can be trained by taking advantage of neuroplasticity. Understanding the neurobiological basis of empathy can inspire us to rewire ourselves for better patient care.


Empathy Brain Social cognition Mirror neuron system Theory of mind Oxytocin Genetics Neuroplasticity 


  1. 1.
    De Waal, F. B. M. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59(1), 279–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Luyten, P., & Fonagy, P. (2015). The neurobiology of mentalizing. Personality Disorders: Theory, Research, and Treatment, 6(4), 366–379.CrossRefGoogle Scholar
  3. 3.
    Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584.PubMedCrossRefGoogle Scholar
  4. 4.
    Wimmer, H. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13(1), 103–128.PubMedCrossRefGoogle Scholar
  5. 5.
    De Waal, F. B. M., & Preston, S. D. (2017). Mammalian empathy: Behavioural manifestations and neural basis. Nature Reviews Neuroscience, 18, 498.PubMedCrossRefGoogle Scholar
  6. 6.
    Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113–126.CrossRefGoogle Scholar
  7. 7.
    Sanchez, G., Ward, P. M., Musser, E., Galynker, I., Sandhu, S., & Foster, A. E. (2019). Chapter 4, Measuring empathy. In A. E. Foster & Z. S. Yaseen (Eds.), Teaching empathy in healthcare: Building a new core competency. Berlin: Springer.Google Scholar
  8. 8.
    Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(2), 241–251.CrossRefGoogle Scholar
  9. 9.
    Ekman, P., & Friesen, W. V. (1976). Measuring facial movement. Environmental Psychology and Nonverbal Behavior, 1(1), 56–75.CrossRefGoogle Scholar
  10. 10.
    Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110–114.PubMedCrossRefGoogle Scholar
  11. 11.
    Pobric, G., & Hamilton, A. F. D. C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16(5), 524–529.PubMedCrossRefGoogle Scholar
  12. 12.
    Michael, J., Sandberg, K., Skewes, J., Wolf, T., Blicher, J., Overgaard, M., et al. (2014). Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding. Psychological Science, 25(4), 963–972.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132(3), 617–627.PubMedCrossRefGoogle Scholar
  14. 14.
    Reniers, R. L., Corcoran, R., Drake, R., Shryane, N. M., Völlm, B. A., & The QCAE. (2011). A questionnaire of cognitive and affective empathy. Journal of Personality Assessment, 93(1), 84–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Eres, R., Decety, J., Louis, W. R., & Molenberghs, P. (2015). Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. NeuroImage, 117, 305–310.PubMedCrossRefGoogle Scholar
  16. 16.
    Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 2492–2502.CrossRefGoogle Scholar
  17. 17.
    Cheng, Y., Chen, C., Lin, C.-P., Chou, K.-H., & Decety, J. (2010). Love hurts: An fMRI study. NeuroImage, 51(2), 923–929.PubMedCrossRefGoogle Scholar
  18. 18.
    Mai, X., Zhang, W., Hu, X., Zhen, Z., Xu, Z., Zhang, J., et al. (2016). Using tDCS to explore the role of the right temporo-parietal junction in theory of mind and cognitive empathy. Frontiers in Psychology, 7, 380.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lamm, C., Nusbaum, H. C., Meltzoff, A. N., & Decety, J. (2007). What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. Warrant E, editor. PLoS ONE, 2(12), e1292.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Meyer, M. L., Masten, C. L., Ma, Y., Wang, C., Shi, Z., Eisenberger, N. I., et al. (2013). Empathy for the social suffering of friends and strangers recruits distinct patterns of brain activation. Social Cognitive and Affective Neuroscience, 8(4), 446–454.PubMedCrossRefGoogle Scholar
  21. 21.
    Masten, C. L., Morelli, S. A., & Eisenberger, N. I. (2011). An fMRI investigation of empathy for ‘social pain’ and subsequent prosocial behavior. NeuroImage, 55(1), 381–388.PubMedCrossRefGoogle Scholar
  22. 22.
    Krämer, U. M., Mohammadi, B., Doñamayor, N., Samii, A., & Münte, T. F. (2010). Emotional and cognitive aspects of empathy and their relation to social cognition—an fMRI-study. Brain Research, 1311, 110–120.PubMedCrossRefGoogle Scholar
  23. 23.
    Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences, 100(9), 5497–5502.CrossRefGoogle Scholar
  24. 24.
    Tusche, A., Bockler, A., Kanske, P., Trautwein, F.-M., & Singer, T. (2016). Decoding the charitable brain: Empathy, perspective taking, and attention shifts differentially predict altruistic giving. Journal of Neuroscience, 36(17), 4719–4732.PubMedCrossRefGoogle Scholar
  25. 25.
    Singer, T. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157–1162.CrossRefGoogle Scholar
  26. 26.
    Shamay-Tsoory, S. G., Abu-Akel, A., Palgi, S., Sulieman, R., Fischer-Shofty, M., Levkovitz, Y., et al. (2013). Giving peace a chance: Oxytocin increases empathy to pain in the context of the Israeli–Palestinian conflict. Psychoneuroendocrinology, 38(12), 3139–3144.PubMedCrossRefGoogle Scholar
  27. 27.
    Leigh, R., Oishi, K., Hsu, J., Lindquist, M., Gottesman, R. F., Jarso, S., et al. (2013). Acute lesions that impair affective empathy. Brain, 136(8), 2539–2549.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Toller, G., Adhimoolam, B., Rankin, K. P., Huppertz, H.-J., Kurthen, M., & Jokeit, H. (2015). Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy. Neuropsychologia, 78, 80–87.PubMedCrossRefGoogle Scholar
  29. 29.
    Parkinson, C., & Wheatley, T. (2014). Relating anatomical and social connectivity: White matter microstructure predicts emotional empathy. Cerebral Cortex, 24(3), 614–625.PubMedCrossRefGoogle Scholar
  30. 30.
    Herbet, G., Lafargue, G., Moritz-Gasser, S., Menjot de Champfleur, N., Costi, E., Bonnetblanc, F., et al. (2015). A disconnection account of subjective empathy impairments in diffuse low-grade glioma patients. Neuropsychologia, 70, 165–176.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Fan, Y., Duncan, N. W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 903–911.CrossRefGoogle Scholar
  32. 32.
    de Greck, M., Wang, G., Yang, X., Wang, X., Northoff, G., & Han, S. (2012). Neural substrates underlying intentional empathy. Social Cognitive and Affective Neuroscience, 7(2), 135–144.PubMedCrossRefGoogle Scholar
  33. 33.
    Kanske, P., Böckler, A., Trautwein, F.-M., & Singer, T. (2015). Dissecting the social brain: Introducing the EmpaToM to reveal distinct neural networks and brain–behavior relations for empathy and Theory of Mind. NeuroImage, 122, 6–19.PubMedCrossRefGoogle Scholar
  34. 34.
    Hsu, C.-T., Conrad, M., & Jacobs, A. M. (2014). Fiction feelings in Harry Potter: Haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience. NeuroReport, 25(17), 1356–1361.PubMedCrossRefGoogle Scholar
  35. 35.
    Cheng, Y., Lin, C.-P., Liu, H.-L., Hsu, Y.-Y., Lim, K.-E., Hung, D., et al. (2007). Expertise modulates the perception of pain in others. Current Biology, 17(19), 1708–1713.PubMedCrossRefGoogle Scholar
  36. 36.
    Saarela, M. V., Hlushchuk, Y., Williams, A. C. D. C., Schurmann, M., Kalso, E., & Hari, R. (2006). The compassionate brain: Humans detect intensity of pain from another’s face. Cerebral Cortex, 17(1), 230–237.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24(3), 771–779.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Decety, J., Michalska, K. J., & Akitsuki, Y. (2008). Who caused the pain? An fMRI investigation of empathy and intentionality in children. Neuropsychologia, 46(11), 2607–2614.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zaki, J., & Ochsner, K. N. (2012). The neuroscience of empathy: Progress, pitfalls and promise. Nature Neuroscience, 15(5), 675.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gu, X., Hof, P. R., Friston, K. J., & Fan, J. (2013). Anterior insular cortex and emotional awareness. Journal of Comparative Neurology, 521(15), 3371–3388.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Del Casale, A., Kotzalidis, G. D., Rapinesi, C., Janiri, D., Aragona, M., Puzella, A., et al. (2017). Neural functional correlates of empathic face processing. Neuroscience Letters, 655, 68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ernst, J., Northoff, G., Böker, H., Seifritz, E., & Grimm, S. (2013). Interoceptive awareness enhances neural activity during empathy. Human Brain Mapping, 34(7), 1615–1624.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bliss, T. V. P., Collingridge, G. L., Kaang, B.-K., & Zhuo, M. (2016). Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nature Reviews Neuroscience, 17(8), 485–496.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lieberman, M. D., & Eisenberger, N. I. (2015). The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference. Proceedings of the National Academy of Sciences, 112(49), 15250–15255.CrossRefGoogle Scholar
  45. 45.
    Lang, S., Yu, T., Markl, A., Müller, F., & Kotchoubey, B. (2011). Hearing others’ pain: neural activity related to empathy. Cognitive, Affective, & Behavioral Neuroscience, 11(3), 386–395.CrossRefGoogle Scholar
  46. 46.
    Gu, X., & Han, S. (2007). Attention and reality constraints on the neural processes of empathy for pain. NeuroImage, 36(1), 256–267.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in My insula: The common neural basis of seeing and feeling disgust. Neuron, 40(3), 655–664.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bernhardt, B. C., & Singer, T. (2012). The neural basis of empathy. Annual Review of Neuroscience, 35(1), 1–23.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., et al. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12, 289.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lawrence, E. J., Shaw, P., Giampietro, V. P., Surguladze, S., Brammer, M. J., & David, A. S. (2006). The role of ‘shared representations’ in social perception and empathy: An fMRI study. NeuroImage, 29(4), 1173–1184.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Morrison, I., Lloyd, D., di Pellegrino, G., & Roberts, N. (2004). Vicarious responses to pain in anterior cingulate cortex: Is empathy a multisensory issue? Cognitive, Affective, & Behavioral Neuroscience, 4(2), 270–278.CrossRefGoogle Scholar
  52. 52.
    Decety, J., Yang, C. Y., & Cheng, Y. (2010). Physicians down-regulate their pain empathy response: An event-related brain potential study. Neuroimage, 50(4), 1676–1682.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Preis, M. A., Kröner-Herwig, B., Schmidt-Samoa, C., Dechent, P., & Barke, A. (2015). Neural correlates of empathy with pain show habituation effects. An fMRI Study. Costantini M, editor. PloS One, 10(8), e0137056.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Pineda, J. A., & Hecht, E. (2009). Mirroring and mu rhythm involvement in social cognition: Are there dissociable subcomponents of theory of mind? Biological Psychology, 80(3), 306–314.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jeon, H., & Lee, S.-H. (2018). From neurons to social beings: Short review of the mirror neuron system research and its socio-psychological and psychiatric implications. Clinical Psychopharmacology and Neuroscience, 16(1), 18–31.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Pfeifer, J. H., Iacoboni, M., Mazziotta, J. C., & Dapretto, M. (2008). Mirroring others’ emotions relates to empathy and interpersonal competence in children. NeuroImage, 39(4), 2076–2085.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7(12), 942–951.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190–198.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    McCormick, L. M., Brumm, M. C., Beadle, J. N., Paradiso, S., Yamada, T., & Andreasen, N. (2012). Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Research: Neuroimaging, 201(3), 233–239.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Catmur, C. (2015). Understanding intentions from actions: Direct perception, inference, and the roles of mirror and mentalizing systems. Consciousness and Cognition, 36, 426–433.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Campbell, M. E. J., & Cunnington, R. (2017). More than an imitation game: Top-down modulation of the human mirror system. Neuroscience & Biobehavioral Reviews, 75, 195–202.CrossRefGoogle Scholar
  63. 63.
    Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., Bowman, L. C., Cannon, E. N., Vanderwert, R. E., et al. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291–313.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: The role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences, 11(4), 153–157.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schulte-Rüther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: A functional magnetic resonance imaging approach to empathy. Journal of Cognitive Neuroscience, 19(8), 1354–1372.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gazzola, V., Aziz-Zadeh, L., & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824–1829.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750–756.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Keysers, C., & Gazzola, V. (2010). Social neuroscience: Mirror neurons recorded in humans. Current Biology, 20(8), R353–R354.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gallese, V. (2003). The roots of empathy: The shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology, 36(4), 171–180.PubMedCrossRefGoogle Scholar
  70. 70.
    Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210(5–6), 419–421.PubMedCrossRefGoogle Scholar
  71. 71.
    Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66(5), 557–560.PubMedCrossRefGoogle Scholar
  72. 72.
    Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. Ashe J, editor. PLoS Biology, 3(3), e79.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kaplan, J. T., & Iacoboni, M. (2006). Getting a grip on other minds: Mirror neurons, intention understanding, and cognitive empathy. Social Neuroscience, 1(3–4), 175–183.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Baird, A. D., Scheffer, I. E., & Wilson, S. J. (2011). Mirror neuron system involvement in empathy: A critical look at the evidence. Social Neuroscience, 6(4), 327–335.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Rizzolatti, G., & Craighero, L. (2005). Mirror neuron: A neurological approach to empathy. In J.-P. Changeux, A. R. Damasio, W. Singer, & Y. Christen (Eds.), Neurobiology of human values (pp. 107–123). Berlin: Springer.CrossRefGoogle Scholar
  76. 76.
    Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653–670.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lamm, C., & Majdandžić, J. (2015). The role of shared neural activations, mirror neurons, and morality in empathy – A critical comment. Neuroscience Research, 90, 15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Yaseen, Z., & Foster, A. E. (2019). Chapter 1, What is empathy. In A. E. Foster & Z. Yaseen (Eds.), Teaching empathy in healthcare: Building a new core competency. Berlin: Springer.Google Scholar
  79. 79.
    Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524.PubMedCrossRefGoogle Scholar
  80. 80.
    Leng, G., Pineda, R., Sabatier, N., & Ludwig, M. (2015). 60 years of neuroendocrinology: The posterior pituitary, from Geoffrey Harris to our present understanding. Journal of Endocrinology, 226(2), T173–T185.PubMedCrossRefGoogle Scholar
  81. 81.
    Yang, H.-P., Wang, L., Han, L., & Wang, S. C. (2013). Nonsocial functions of hypothalamic Oxytocin. ISRN Neuroscience, 2013, 1–13.CrossRefGoogle Scholar
  82. 82.
    Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676.PubMedCrossRefGoogle Scholar
  83. 83.
    Bertsch, K., Gamer, M., Schmidt, B., Schmidinger, I., Walther, S., Kästel, T., et al. (2013). Oxytocin and reduction of social threat hypersensitivity in women with borderline personality disorder. American Journal of Psychiatry, 170(10), 1169–1177.PubMedCrossRefGoogle Scholar
  84. 84.
    Hurlemann, R., Patin, A., Onur, O. A., Cohen, M. X., Baumgartner, T., Metzler, S., et al. (2010). Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. Journal of Neuroscience, 30(14), 4999–5007.PubMedCrossRefGoogle Scholar
  85. 85.
    Krueger, F., Parasuraman, R., Moody, L., Twieg, P., de Visser, E., McCabe, K., et al. (2013). Oxytocin selectively increases perceptions of harm for victims but not the desire to punish offenders of criminal offenses. Social Cognitive and Affective Neuroscience, 8(5), 494–498.PubMedCrossRefGoogle Scholar
  86. 86.
    Strang, S., Gerhardt, H., Marsh, N., Oroz Artigas, S., Hu, Y., Hurlemann, R., et al. (2017). A matter of distance—The effect of oxytocin on social discounting is empathy-dependent. Psychoneuroendocrinology, 78, 229–232.PubMedCrossRefGoogle Scholar
  87. 87.
    Barraza, J. A., & Zak, P. J. (2009). Empathy toward strangers triggers oxytocin release and subsequent generosity. Annals of the New York Academy of Sciences, 1167(1), 182–189.PubMedCrossRefGoogle Scholar
  88. 88.
    Abu-Akel, A., Palgi, S., Klein, E., Decety, J., & Shamay-Tsoory, S. (2015). Oxytocin increases empathy to pain when adopting the other- but not the self-perspective. Social Neuroscience, 10(1), 7–15.PubMedCrossRefGoogle Scholar
  89. 89.
    Hubble, K., Daughters, K., Manstead, A. S., Rees, A., Thapar, A., & van Goozen, S. H. (2017). Oxytocin increases attention to the eyes and selectively enhances self-reported affective empathy for fear. Neuropsychologia, 106, 350–357.PubMedCrossRefGoogle Scholar
  90. 90.
    Sheng, F., Liu, Y., Zhou, B., Zhou, W., & Han, S. (2013). Oxytocin modulates the racial bias in neural responses to others’ suffering. Biological Psychology, 92(2), 380–386.PubMedCrossRefGoogle Scholar
  91. 91.
    Perez-Rodriguez, M. M., Mahon, K., Russo, M., Ungar, A. K., & Burdick, K. E. (2015). Oxytocin and social cognition in affective and psychotic disorders. European Neuropsychopharmacology, 25(2), 265–282.CrossRefGoogle Scholar
  92. 92.
    Geng, Y., Zhao, W., Zhou, F., Ma, X., Yao, S., Hurlemann, R., et al. (2018). Oxytocin enhancement of emotional empathy: Generalization across cultures and effects on amygdala activity. Frontiers in Neuroscience, 12, 512.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Riem, M. M. E., van IJzendoorn, M. H., Tops, M., Boksem, M. A., Rombouts, S. A., & Bakermans-Kranenburg, M. J. (2013). Oxytocin effects on complex brain networks are moderated by experiences of maternal love withdrawal. European Neuropsychopharmacology, 23(10), 1288–1295.PubMedCrossRefGoogle Scholar
  94. 94.
    Li, T., Chen, X., Mascaro, J., Haroon, E., & Rilling, J. K. (2017). Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers. Hormones and Behavior, 93, 193–202.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Abu-Akel, A., Fischer-Shofty, M., Levkovitz, Y., Decety, J., & Shamay-Tsoory, S. (2014). The role of oxytocin in empathy to the pain of conflictual out-group members among patients with schizophrenia. Psychological Medicine, 44(16), 3523–3532.PubMedCrossRefGoogle Scholar
  96. 96.
    Davis, M. C., Green, M. F., Lee, J., Horan, W. P., Senturk, D., Clarke, A. D., et al. (2014). Oxytocin-augmented social cognitive skills training in Schizophrenia. Neuropsychopharmacology, 39(9), 2070–2077.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Davis, M. C., Lee, J., Horan, W. P., Clarke, A. D., McGee, M. R., Green, M. F., et al. (2013). Effects of single dose intranasal oxytocin on social cognition in schizophrenia. Schizophrenia Research, 147(2–3), 393–397.PubMedCrossRefGoogle Scholar
  98. 98.
    Shin, N. Y., Park, H. Y., Jung, W. H., Park, J. W., Yun, J.-Y., Jang, J. H., et al. (2015). Effects of oxytocin on neural response to facial expressions in patients with Schizophrenia. Neuropsychopharmacology, 40(8), 1919–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Quattrocki, E., & Friston, K. (2014). Autism, oxytocin and interoception. Neuroscience & Biobehavioral Reviews, 47, 410–430.CrossRefGoogle Scholar
  100. 100.
    Althaus, M., Groen, Y., Wijers, A. A., Noltes, H., Tucha, O., & Hoekstra, P. J. (2015). Oxytocin enhances orienting to social information in a selective group of high-functioning male adults with autism spectrum disorder. Neuropsychologia, 79, 53–69.PubMedCrossRefGoogle Scholar
  101. 101.
    Okamoto, Y., Ishitobi, M., Wada, Y., & Kosaka, H. (2016). The potential of nasal oxytocin administration for remediation of autism spectrum disorders. CNS and Neurological Disorders Drug Targets, 15(5), 564–577.PubMedCrossRefGoogle Scholar
  102. 102.
    McDonald, N. M., Baker, J. K., & Messinger, D. S. (2016). Oxytocin and parent–child interaction in the development of empathy among children at risk for autism. Developmental Psychology, 52(5), 735–745.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gong, P., Fan, H., Liu, J., Yang, X., Zhang, K., & Zhou, X. (2017). Revisiting the impact of OXTR rs53576 on empathy: A population-based study and a meta-analysis. Psychoneuroendocrinology, 80, 131–136.PubMedCrossRefGoogle Scholar
  104. 104.
    Luo, S., Ma, Y., Liu, Y., Li, B., Wang, C., Shi, Z., et al. (2015). Interaction between oxytocin receptor polymorphism and interdependent culture values on human empathy. Social Cognitive and Affective Neuroscience, 10(9), 1273–1281.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., et al. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of the National Academy of Sciences, 107(31), 13936–13941.CrossRefGoogle Scholar
  106. 106.
    Wade, M., Hoffmann, T. J., Wigg, K., & Jenkins, J. M. (2014). Association between the oxytocin receptor (OXTR) gene and children’s social cognition at 18 months. Genes, Brain and Behavior, 13(7), 603–610.CrossRefGoogle Scholar
  107. 107.
    Schneiderman, I., Kanat-Maymon, Y., Ebstein, R. P., & Feldman, R. (2014). Cumulative risk on the oxytocin receptor gene (OXTR) underpins empathic communication difficulties at the first stages of romantic love. Social Cognitive and Affective Neuroscience, 9(10), 1524–1529.PubMedCrossRefGoogle Scholar
  108. 108.
    Chen, F. S., Kumsta, R., Dvorak, F., Domes, G., Yim, O. S., Ebstein, R. P., et al. (2015). Genetic modulation of oxytocin sensitivity: A pharmacogenetic approach. Translational Psychiatry, 5(10), e664–e664.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dadds, M. R., Moul, C., Cauchi, A., Dobson-Stone, C., Hawes, D. J., Brennan, J., et al. (2014). Polymorphisms in the oxytocin receptor gene are associated with the development of psychopathy. Development and Psychopathology, 26(01), 21–31.PubMedCrossRefGoogle Scholar
  110. 110.
    Weiskopf, N., Scharnowski, F., Veit, R., Goebel, R., Birbaumer, N., & Mathiak, K. (2004). Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology-Paris, 98(4–6), 357–373.CrossRefGoogle Scholar
  111. 111.
    Foster, A., Trieu, M., Azutillo, E., Halan, S., & Lok, B. (2017). Teaching empathy in healthcare: From mirror neurons to education technology. Journal of Technology in Behavioral Science, 2(2), 94–105.CrossRefGoogle Scholar
  112. 112.
    Hein, G., Engelmann, J. B., Vollberg, M. C., & Tobler, P. N. (2016). How learning shapes the empathic brain. Proceedings of the National Academy of Sciences, 113(1), 80–85.CrossRefGoogle Scholar
  113. 113.
    Moll, J., Weingartner, J. H., Bado, P., Basilio, R., Sato, J. R., Melo, B. R., et al. (2014). Voluntary enhancement of neural signatures of affiliative emotion using fMRI neurofeedback. Hampson M, editor. PLoS ONE, 9(5), e97343.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lorenzetti, V., Melo, B., Basílio, R., Suo, C., Yücel, M., Tierra-Criollo, C. J., et al. (2018). Emotion regulation using virtual environments and real-time fMRI neurofeedback. Frontiers in Neurology, 9, 390.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kouijzer, M. E. J., de Moor, J. M. H., Gerrits, B. J. L., Congedo, M., & van Schie, H. T. (2009). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3(1), 145–162.CrossRefGoogle Scholar
  116. 116.
    Kouijzer, M. E. J., de Moor, J. M. H., Gerrits, B. J. L., Buitelaar, J. K., & van Schie, H. T. (2009). Long-term effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3(2), 496–501.CrossRefGoogle Scholar
  117. 117.
    Pineda, J. A., Carrasco, K., Datko, M., Pillen, S., & Schalles, M. (2014). Neurofeedback training produces normalization in behavioural and electrophysiological measures of high-functioning autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644), 20130183.CrossRefGoogle Scholar
  118. 118.
    Pineda, J. A., Friedrich, E. V., & LaMarca, K. (2014). Neurorehabilitation of social dysfunctions: A model-based neurofeedback approach for low and high-functioning autism. Frontiers in Neuroengineering, 7, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Caria, A., & de Falco, S. (2015). Anterior insular cortex regulation in autism spectrum disorders. Frontiers in Behavioral Neuroscience, 9, 38.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wang, J., Wang, Y., Hu, Z., & Li, X. (2014). Transcranial direct current stimulation of the dorsolateral prefrontal cortex increased pain empathy. Neuroscience, 281, 202–207.PubMedCrossRefGoogle Scholar
  121. 121.
    Yang, C.-C., Khalifa, N., & Völlm, B. (2018). The effects of repetitive transcranial magnetic stimulation on empathy: A systematic review and meta-analysis. Psychological Medicine, 48(05), 737–750.PubMedCrossRefGoogle Scholar
  122. 122.
    Leung, M.-K., Chan, C. C. H., Yin, J., Lee, C.-F., So, K.-F., & Lee, T. M. C. (2013). Increased gray matter volume in the right angular and posterior parahippocampal gyri in loving-kindness meditators. Social Cognitive and Affective Neuroscience, 8(1), 34–39.PubMedCrossRefGoogle Scholar
  123. 123.
    Mascaro, J. S., Rilling, J. K., Tenzin Negi, L., & Raison, C. L. (2013). Compassion meditation enhances empathic accuracy and related neural activity. Social Cognitive and Affective Neuroscience, 8(1), 48–55.PubMedCrossRefGoogle Scholar
  124. 124.
    Klimecki, O. M., Leiberg, S., Ricard, M., & Singer, T. (2014). Differential pattern of functional brain plasticity after compassion and empathy training. Social Cognitive and Affective Neuroscience, 9(6), 873–879.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michelle Trieu
    • 1
  • Adriana E. Foster
    • 2
    Email author
  • Zimri S. Yaseen
    • 3
  • Courtnie Beaubian
    • 3
  • Raffaella Calati
    • 3
  1. 1.Kaiser PermanenteOaklandUSA
  2. 2.Department of Psychiatry and Behavioral HealthHerbert Wertheim College of Medicine, Florida International UniversityMiamiUSA
  3. 3.Department of Psychiatry and Behavioral HealthIcahn School of Medicine, Mount Sinai Beth IsraelNew YorkUSA

Personalised recommendations