Advertisement

Enzyme Discovery and Selection

  • Pablo Carbonell
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Enzymes have the ability of catalyzing reactions. Each organism has evolved its very own version of an enzyme. Having to select an enzyme sequence for a target reaction is not always straightforward. In some cases, we may have hundreds of variants coming from different organisms to choose from and with little information about the best choice. In other cases, no known enzyme sequence catalyzing the desired reaction would be known. In this chapter, you will learn some basic techniques based on homology modeling both of the sequence and the chemical reaction allowing to guide us when selecting enzyme sequence candidates. Based on such approaches, at the end of this chapter we will discuss how to expand natural capabilities of enzymes through promiscuity.

References

  1. 1.
    Altman, T., Travers, M., Kothari, A., Caspi, R., Karp, P.D.: A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics 14(1), 112 (2013). https://doi.org/10.1186/1471-2105-14-112 CrossRefGoogle Scholar
  2. 2.
    Arnold, F.H.: Enzymes by evolution: bringing new chemistry to life. Mol. Front. J. 2(01), 9–18 (2018). https://doi.org/10.1142/S2529732518400023 CrossRefGoogle Scholar
  3. 3.
    Carbonell, P., Wong, J., Swainston, N., Takano, E., Turner, N.J., Scrutton, N.S., Kell, D.B., Breitling, R., Faulon, J.L.: Selenzyme: enzyme selection tool for pathway design. Bioinformatics 34(12), 2153–2154 (2018).  https://doi.org/10.1093/bioinformatics/bty065 CrossRefGoogle Scholar
  4. 4.
    Chang, A., Schomburg, I., Placzek, S., Jeske, L., Ulbrich, M., Xiao, M., Sensen, C.W., Schomburg, D.: BRENDA in 2015: exciting developments in its 25th year of existence. Nucl. Acids Res. gku1068 (2014).  https://doi.org/10.1093/nar/gku1068 CrossRefGoogle Scholar
  5. 5.
    Duigou, T., du Lac, M., Carbonell, P., Faulon, J.L.: RetroRules: a database of reaction rules for engineering biology. Nucl. Acids Res. (2018).  https://doi.org/10.1093/nar/gky940 Google Scholar
  6. 6.
    Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum, G.A., Berthold, M.R.: KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. (2017). https://doi.org/10.1016/j.jbiotec.2017.07.028 CrossRefGoogle Scholar
  7. 7.
    Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.A., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., Bateman, A.: The Pfam protein families database: towards a more sustainable future. Nucl. Acids Res. 44(D1), D279–D285 (2016).  https://doi.org/10.1093/nar/gkv1344 CrossRefGoogle Scholar
  8. 8.
    Holm, L., Laakso, L.M.: Dali server update. Nucl. Acids Res. 44(W1), W351–W355 (2016).  https://doi.org/10.1093/nar/gkw357 CrossRefGoogle Scholar
  9. 9.
    Johnson, C.H., Ivanisevic, J., Siuzdak, G.: Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17(7), 451–459 (2016).  https://doi.org/10.1038/nrm.2016.25 CrossRefGoogle Scholar
  10. 10.
    Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucl. Acids Res. 28(1), 374 (2000).  https://doi.org/10.1093/nar/28.1.374 CrossRefGoogle Scholar
  11. 11.
    Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)CrossRefGoogle Scholar
  12. 12.
    Maggiora, G.M., Shanmugasundaram, V.: Molecular similarity measures. Methods Mol. Biol. (Clifton, N.J.) 672, 39–100 (2011). https://doi.org/10.1007/978-1-60761-839-3_2 Google Scholar
  13. 13.
    Moretti, S., Martin, O., Tran, T.V.D., Bridge, A., Morgat, A., Pagni, M.: MetaNetX/MNXref reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucl. Acids Res. 44(D1), D523–D526 (2016).  https://doi.org/10.1093/nar/gkv1117 CrossRefGoogle Scholar
  14. 14.
    Ortiz, A.R., Strauss, C.E., Olmea, O.: MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 11(11), 2606–2621 (2002). https://doi.org/10.1110/ps.0215902 CrossRefGoogle Scholar
  15. 15.
    Prather, K.L.J.: Chemistry as biology by design. Microbial Biotechnol. (2018). https://doi.org/10.1111/1751-7915.13345 CrossRefGoogle Scholar
  16. 16.
    Rahman, S.A., Torrance, G., Baldacci, L., Martínez Cuesta, S., Fenninger, F., Gopal, N., Choudhary, S., May, J.W., Holliday, G.L., Steinbeck, C., Thornton, J.M.: Reaction Decoder Tool (RDT): extracting features from chemical reactions. Bioinformatics 32(13), 2065–2066 (2016).  https://doi.org/10.1093/bioinformatics/btw096 CrossRefGoogle Scholar
  17. 17.
    Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European molecular biology open software suite. Trends Genet. 16(6), 276–277 (2000)CrossRefGoogle Scholar
  18. 18.
    Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., Wu, C.H.: UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31(6), 926–932 (2015).  https://doi.org/10.1093/bioinformatics/btu739 CrossRefGoogle Scholar
  19. 19.
    Taly, J.F., Magis, C., Bussotti, G., Chang, J.M., Tommaso, P.D., Erb, I., Espinosa-Carrasco, J., Kemena, C., Notredame, C.: Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat. Protoc. 6(11), 1669–1682 (2011).  https://doi.org/10.1038/nprot.2011.393 CrossRefGoogle Scholar
  20. 20.
    Yachdav, G., Wilzbach, S., Rauscher, B., Sheridan, R., Sillitoe, I., Procter, J., Lewis, S.E., Rost, B., Goldberg, T.: MSAViewer: interactive JavaScript visualization of multiple sequence alignments. Bioinformatics 32(22), 3501–3503 (2016).  https://doi.org/10.1093/bioinformatics/btw474 PubMedPubMedCentralGoogle Scholar

Further Reading

  1. A good introduction to sequence similarity searching:Google Scholar
  2. Pearson, W.R.: An Introduction to Sequence Similarity (Homology) Searching. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis … [et al.] (2013).Google Scholar
  3. A good introduction to protein structure analysis using PyMOL:Google Scholar
  4. Skern, T.: Exploring Protein Structure: Principles and Practice. Learning Materials in Biosciences. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  5. EC-BLAST provides a good example of a tool for enzyme discovery and selection focused on the reaction:Google Scholar
  6. Rahman, S.A., Cuesta, S.M., Furnham, N., Holliday, G.L., Thornton, J.M.: EC-BLAST: a tool to automatically search and compare enzyme reactions. Nat. Methods 11(2), 171–174 (2014)CrossRefGoogle Scholar
  7. A formal introduction to extended metabolic space modeling:Google Scholar
  8. Carbonell, P., Delépine, B., Faulon, J.L.: Extended metabolic space modeling. In: Methods in Molecular Biology, vol. 1671, pp. 83–96 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo Carbonell
    • 1
  1. 1.Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK

Personalised recommendations