Advertisement

Deep CNN-Based Recognition of JSL Finger Spelling

  • Nam Tu Nguen
  • Shinji Sako
  • Bogdan KwolekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11734)

Abstract

In this paper, we present a framework for recognition of static finger spelling in Japanese Sign Language on RGB images. The finger spelled signs were recognized by an ensemble consisting of a ResNet-based convolutional neural network and two ResNet quaternion convolutional neural networks. A 3D articulated hand model has been used to generate synthetic finger spellings and to extend a dataset consisting of real hand gestures. Twelve different gesture realizations were prepared for each of 41 signs. Ten images have been rendered for each realization through interpolations between the starting and end poses. Experimental results demonstrate that owing to sufficient amount of training data a high recognition rate can be attained on images from a single RGB camera. Results achieved by the ResNet quaternion convolutional neural network are better than results obtained by the ResNet CNN. The best recognition results were achieved by the ensemble. The JSL-rend dataset is available for download.

Notes

Acknowledgments

This work was supported by Polish National Science Center (NCN) under a research grant 2017/27/B/ST6/01743 and JSPS KAKENHI under a grant 17H06114.

References

  1. 1.
    Sagayam, M., Hemanth, J.: Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality 21(2), 91–107 (2017)CrossRefGoogle Scholar
  2. 2.
    Chen, F., Zhong, Q., Cannella, F., Sekiyama, K., Fukuda, T.: Hand gesture modeling and recognition for human and robot interactive assembly using Hidden Markov Models. Int. J. Adv. Rob. Syst. 12(4), 48 (2015)CrossRefGoogle Scholar
  3. 3.
    Raj, M.D., Gogul, I., Thangaraja, M., Kumar, V.: Static gesture recognition based precise positioning of 5-DOF robotic arm using FPGA. In: Trends in Industrial Measurement and Automation (TIMA), pp. 1–6 (2017)Google Scholar
  4. 4.
    Liu, H., Wang, L.: Gesture recognition for human-robot collaboration: a review. Int. J. Ind. Ergon. 68, 355–367 (2018)CrossRefGoogle Scholar
  5. 5.
    Patil, S., et al.: GesturePod: programmable gesture recognition for augmenting assistive devices, Technical report, Microsoft, May 2018Google Scholar
  6. 6.
    Rautaray, S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)CrossRefGoogle Scholar
  7. 7.
    Al-Shamayleh, A.S., Ahmad, R., Abushariah, M., Alam, K.A., Jomhari, N.: A systematic literature review on vision based gesture recognition techniques. Multimedia Tools Appl. 77(21), 28121–28184 (2018)CrossRefGoogle Scholar
  8. 8.
    Ohn-Bar, E., Trivedi, M.: Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 15(6), 2368–2377 (2014)CrossRefGoogle Scholar
  9. 9.
    Pisharady, P., Saerbeck, M.: Recent methods and databases in vision-based hand gesture recognition. Comput. Vis. Image Underst. 141, 152–165 (2015)CrossRefGoogle Scholar
  10. 10.
    Oyedotun, O., Khashman, A.: Deep learning in vision-based static hand gesture recognition. Neural Comput. Appl., 1–11 (2016)Google Scholar
  11. 11.
    Tompson, J., Stein, M., LeCun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. 33(5) (2014)CrossRefGoogle Scholar
  12. 12.
    Nagi, J., Ducatelle, F., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: IEEE ICSIP, pp. 342–347 (2011)Google Scholar
  13. 13.
    Barros, P., Magg, S., Weber, C., Wermter, S.: A multichannel convolutional neural network for hand posture recognition. In: Wermter, S., et al. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 403–410. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11179-7_51CrossRefGoogle Scholar
  14. 14.
    Koller, O., Ney, H., Bowden, R.: Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3793–3802 (2016)Google Scholar
  15. 15.
    Tabata, Y., Kuroda, T.: Finger spelling recognition using distinctive features of hand shape. In: International Conference on Disability, Virtual Reality and Associated Technologies with Art Abilitation, pp. 287–292 (2008)Google Scholar
  16. 16.
    Kane, L., Khanna, P.: A framework for live and cross platform fingerspelling recognition using modified shape matrix variants on depth silhouettes. Comput. Vis. Image Underst. 141, 138–151 (2015)CrossRefGoogle Scholar
  17. 17.
    Kwolek, B., Sako, S.: Learning siamese features for finger spelling recognition. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 225–236. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70353-4_20CrossRefGoogle Scholar
  18. 18.
    Rosalina, L.Y., Hadisukmana, N., Wahyu, R.B., Roestam, R., Wahyu, Y.: Implementation of real-time static hand gesture recognition using artificial neural network. In: CAIPT, pp. 1–6 (2017)Google Scholar
  19. 19.
    Asad, M., Slabaugh, G.: SPORE: staged probabilistic regression for hand orientation inference. Comput. Vis. Image Underst. 161, 114–129 (2017)CrossRefGoogle Scholar
  20. 20.
    Dawod, A.Y., Nordin, M.J., Abdullah, J.: Static fingerspelling recognition based on boundary tracing algorithm and chain code. In: International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, pp. 104–109. ACM (2018)Google Scholar
  21. 21.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)Google Scholar
  22. 22.
    Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. In: Interspeech, ISCA, pp. 22–26 (2018)Google Scholar
  23. 23.
    Popa, C.A.: Learning algorithms for quaternion-valued neural networks. Neural Process. Lett. 47(3), 949–973 (2018)CrossRefGoogle Scholar
  24. 24.
    Nitta, T.: A quaternary version of the back-propagation algorithm. In: Proceedings of International Conference on Neural Networks, vol. 5, pp. 2753–2756 (1995)Google Scholar
  25. 25.
    Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 645–661. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01237-3_39CrossRefGoogle Scholar
  26. 26.
    Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Int. Res. 11(1), 169–198 (1999)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Frontier Research Institute for Information ScienceNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations