Assessing the Environmental Viability of 3D Concrete Printing Technology

  • Kateryna KuzmenkoEmail author
  • Nadja Gaudillière
  • Adélaïde Feraille
  • Justin Dirrenberger
  • Olivier Baverel
Conference paper


The ongoing development of digital design and fabrication techniques has explicitly changed the way architecture is thought, designed and produced. 3D Concrete Printing Technology personifies best the long-lasting pursuit of non-standard production in architecture. A recently established tendency of systematic recourse to optimization algorithms for formal design fashioned a general belief into the sustainable character of those forms as well as the potential of digital technologies in field of environmental performance of construction sector.

This paper presents a case study of environmental evaluation of a generic building system redesigned for mortar 3D Printing technology. The life cycle assessment of construction phase of a system has been performed and the sensitivity study has been effectuated. The results show that the contribution of robotic 3D printing system to the overall result is fairly significant and, in some figures, can even exceed the one of the materials.


Computation design LCA 3D printing Concrete 


  1. 1.
    United Nations: World Urbanization Prospects: The 2018 Revision, Key Facts (2018)Google Scholar
  2. 2.
    UN Environment and International Energy Agency: Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report 2017. Global Status Report 2017 (2017)Google Scholar
  3. 3.
    McKinsey & Company: Reinventing Construction: A Route To Higher Productivity. McKinsey Global Institute, Executive Summary, févr (2017)Google Scholar
  4. 4.
    World Economic Forum et BCG: The critical challenge for engineering, construction, and infrastructure companies is to increase productivityGoogle Scholar
  5. 5.
    Duballet, R., Baverel, O., Dirrenberger, J.: Space truss masonry walls with robotic mortar extrusion. Structures 18, 41–47 (2018)Google Scholar
  6. 6.
    Rippmann, M., Liew, A., Van Mele, T., Block, P.: Design, fabrication and testing of discrete 3D sand-printed floor prototypes. Mater. Today Commun. 15, 254–259 (2018)CrossRefGoogle Scholar
  7. 7.
    Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P.: Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders. Mater. Des. 100, 102–109 (2016)CrossRefGoogle Scholar
  8. 8.
    Pegna, J.: Exploratory investigation of solid freeform construction. Autom. Constr. 5(5), 427–437 (1997)CrossRefGoogle Scholar
  9. 9.
    Khoshnevis, B.: Automated construction by contour crafting—related robotics and information technologies. Autom. Constr. 13(1), 5–19 (2004)CrossRefGoogle Scholar
  10. 10.
    Buswell, R.A., Soar, R.C., Gibb, A.G.F., Thorpe, A.: Freeform construction: mega-scale rapid manufacturing for construction. Autom. Constr. 16(2), 224–231 (2007)CrossRefGoogle Scholar
  11. 11.
    Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., Pambaguian, L.: Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 93, 430–450 (2014)CrossRefGoogle Scholar
  12. 12.
    Duballet, R., Baverel, O., Dirrenberger, J.: Classification of building systems for concrete 3D printing. Autom. Constr. 83, 247–258 (2017)CrossRefGoogle Scholar
  13. 13.
    Gramazio, F., Kohler, M., Willmann, J.: The Robotic Touch: How Robots Change Architecture. Park Books, Zurich (2014)Google Scholar
  14. 14.
    Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G.F., Thorpe, T.: Developments in construction-scale additive manufacturing processes. Autom. Constr. 21, 262–268 (2012)CrossRefGoogle Scholar
  15. 15.
    Roussel, N.: Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018)CrossRefGoogle Scholar
  16. 16.
    Buswell, R.A., de Silva, W.R.L., Jones, S.Z., Dirrenberger, J.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018)CrossRefGoogle Scholar
  17. 17.
    Architectures Non Standard. Centre Georges Pompidou, Service Commercial, Paris, France (2003)Google Scholar
  18. 18.
    Lynn, G.: Folding in architecture (1993). The Digital Turn in Architecture 1992–2012, pp. 28–47. Wiley-Blackwell (2015)Google Scholar
  19. 19.
    Schumacher, P.: Parametricism - a new global style for architecture and urban design. Architect. Des. 79(4), 14–23 (2009)Google Scholar
  20. 20.
    Carpo, M.: The Second Digital Turn: Design Beyond Intelligence, 1st edn. The MIT Press, Cambridge, Massachusetts (2017)CrossRefGoogle Scholar
  21. 21.
    International Organization for Standardization: ISO 14040Google Scholar
  22. 22.
    International Organization for Standardization: ISO 14044Google Scholar
  23. 23.
    Faludi, J., Bayley, C., Bhogal, S., Iribarne, M.: Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototy. J. 21(1), 14–33 (2015)CrossRefGoogle Scholar
  24. 24.
    Ford, S., Despeisse, M.: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)CrossRefGoogle Scholar
  25. 25.
    Agustí-Juan, I., Habert, G.: Environmental design guidelines for digital fabrication. J. Clean. Prod. 142, 2780–2791 (2017)CrossRefGoogle Scholar
  26. 26.
    Gramazio Kohler Research et ETH Zurich: Mesh Mould (2014–2012). [En ligne]. Disponible sur. Consulté le 02 avr 2019
  27. 27.
    Agustí-Juan, I., Müller, F., Hack, N., Wangler, T., Habert, G.: Potential benefits of digital fabrication for complex structures: environmental assessment of a robotically fabricated concrete wall. J. Clean. Prod. 154, 330–340 (2017)CrossRefGoogle Scholar
  28. 28.
    Krieg, O.D., Bechert, S., Groenewolt, A., Horn, R., Menges, A.: Affordances of complexity: evaluation of a robotic production process for segmented timber shell structures, p. 8. WCTE (2018)Google Scholar
  29. 29.
    European Commission, Joint Research Centre, et Institute for Environment and Sustainability, International reference life cycle data system (ILCD) handbook general guide for life cycle assessment: provisions and action steps. Publications Office, Luxembourg (2011)Google Scholar
  30. 30.
    Lobaccaro, G., Wiberg, A.H., Ceci, G., Manni, M., Lolli, N., Berardi, U.: Parametric design to minimize the embodied GHG emissions in a ZEB. Energy Build. 167, 106–123 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kateryna Kuzmenko
    • 1
    • 2
    Email author
  • Nadja Gaudillière
    • 3
    • 4
  • Adélaïde Feraille
    • 1
  • Justin Dirrenberger
    • 3
    • 5
  • Olivier Baverel
    • 1
  1. 1.Laboratoire NavierEcole des Ponts ParisTechMLV Cedex 2France
  2. 2.Kardham C&H ArchitectureParisFrance
  3. 3.XtreeERungisFrance
  4. 4.Laboratoire GSAENSA Paris-MalaquaisParisFrance
  5. 5.Laboratoire PIMMArts et Métiers ParisTechParisFrance

Personalised recommendations