Theranostic Potential of Aptamers in Antimicrobial Chemotherapy

  • Bushra Jamil
  • Nagina Atlas
  • Asma Qazi
  • Bushra Uzair


Worldwide the infectious diseases are a major threat to the human population. However, the most important parameter is the prompt and sensitive diagnosis of pathogens. Therefore, tremendous efforts have been made for the development of rapid and portable detection techniques. The identification and treatment of infectious diseases at the nano and molecular levels is a hard task to achieve because of the scarcity of effective probes for characterization and recognition of biomarkers of these pathogens. Nonetheless, if it made possible simultaneous diagnosis and treatment at the specific spot, i.e., theranostics can be beneficial for treating the disease at a cellular level and can be helpful to understand the disease system. However, for theranostics a sensing system should be able to detect and measure biomarkers quickly. In this regard, aptamers (oligonucleotide polymers consist of single-stranded DNA (ssDNA) or RNA) have displayed the ability to be used as probes for the recognition of various targets at molecular level. DNA and RNA have the capacity of doing much lot than just keeping genetic information and therefore are also known as functional nucleic acids. Aptamer-based biosensors would be an attractive format because they can be developed for various molecules using the same sensing format. Therefore, the aptasensors utilizing aptamers for various bacterial infections have stimulating theranostic potential as well. In this chapter, the potential of aptamers as theranostic agent for bacterial infections has been discussed. The advantages and limitations of aptamer-based theranostics for the development of personalized medicine are also discussed.


SELEX Aptamers Microbial recognition elements Advanced microbial detection 



Aptamer-based sandwich assay


Gold nanoparticles


Biofilm-associated protein


Enzyme-linked aptamer sorbent assay


Enzyme-linked immunosorbent assay


Food and Drug Administration


Locked nucleic acid


Monoclonal antibodies


Molecular recognition elements


Polyethylene glycol


Systematic evolution of ligands by exponential enrichment


Staphylococcal enterotoxins


Silica nanoparticles


Single-stranded DNA


Whole-bacteria SELEX


  1. Babb R, Pirofski LA. Help is on the way: monoclonal antibody therapy for multi-drug resistant bacteria. Virulence. 2017;8:1055–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baig IA, Moon JY, Lee SC, Ryoo SW, Yoon MY. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase. Biochem Biophys Acta. 2015;1854:1338–50.PubMedPubMedCentralGoogle Scholar
  3. Baptista PV. Nanodiagnostics: leaving the research lab to enter the clinics? Diagnosis. 2014;1:305–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 2015;4(1–7):e223.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bruno JG. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules. 2015;20:6866–87.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W, Zhu Y, Shen B. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 2009;37:4621–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep. 2013;3:1863.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen F, Zhou J, Luo F, Mohammed AB, Zhang XL. Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2007;357:743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cheon HJ, Lee SM, Kim SR, Shin HY, Seo YH, Cho YK, Lee SP, Kim MI. Colorimetric detection of MPT64 antibody based on an aptamer adsorbed magnetic nanoparticles for diagnosis of tuberculosis. J Nanosci Nanotechnol. 2019;19(2):622–6.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl Mater Interfaces. 2013;5(21):11348–54.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Das R, Dhiman A, Kapil A, Bansal V, Sharma TK. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal Bioanal Chem. 2019;411:1229–38.PubMedCrossRefPubMedCentralGoogle Scholar
  12. DeGrasse JA. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One. 2012;7(3):e33410.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Diener JL, Daniel Lagasse HA, Duerschmied D, Merhi Y, Tanguay JF, Hutabarat R, Gilbert J, Wag ner DD, Wchaub R. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemost. 2009;7:1155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dougan H, Lyster DM, Vo CV, Stafford A, Weitz JI, Hobbs JB. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Biol. 2000;27:289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Duzgun A, Imran H, Levon K, Rius FX. Protein detection with potentiometric aptasensors: a comparative study between polyaniline and single-walled carbon nanotubes transducers. Sci World J. 2013;2:1–8.CrossRefGoogle Scholar
  16. Fine SL, Martin DF, Kirkpatrick P. Pegaptanib sodium. Nat Rev Drug Discov. 2005;4:1878–87.CrossRefGoogle Scholar
  17. Gao S, Zheng X, Jiao B, Wang L. Post-SELEX optimization of aptamers. Anal Bioanal Chem. 2016;408:4567–73.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol. 2013;4:27–40.PubMedPubMedCentralGoogle Scholar
  19. Heo K, Min SW, Sung HJ, Kim HG, Kim HJ, Kim YH, Choi BK, Han S, Chung S, Lee ES, Chung J, Kim IH. An aptamer-antibody complex (oligobody) as a novel delivery platform for targeted cancer therapies. J Control Release. 2016;229:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hjalmarsson K, Marcellaro A, Norlander L. Aptamers: future tools for diagnostics and therapy. Umeå: Swedish Defence Research Agency; 2004.Google Scholar
  21. Hong KL, Sooter LJ. Single-stranded DNA aptamers against pathogens and toxins: identification and biosensing applications. Biomed Res Int. 2015;2015:1–31.Google Scholar
  22. Hong P, Li W, Li J. Applications of aptasensors in clinical diagnostics. Sensors. 2012;12:1181–93.PubMedCrossRefGoogle Scholar
  23. Hong KL, Battistella L, Salva AD, Williams RM, Sooter LJ. In vitro selection of single-stranded DNA molecular recognition elements against S. aureus alpha toxin and sensitive detection in human serum. Int J Mol Sci. 2015;16(2):2794–809.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Huang Y, Chen X, Duan N, Wu S, Wang Z, Wei X, Wang Y. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chem. 2015;166:623–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Karlsen KK, Wengel J. Locked nucleic acid and aptamers. Nucleic Acid Ther. 2012;22:366–70.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kim YS, Song MY, Jurng J, Kim BC. Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell–systematic evolution of ligands by exponential enrichment approach. Anal Biochem. 2013;436(1):22–8.PubMedCrossRefGoogle Scholar
  27. Kim YS, Chung J, Song MY, Jurng J, Kim BC. Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens Bioelectron. 2014;54:195–8.PubMedCrossRefGoogle Scholar
  28. Ku TH, Zhang T, Luo H, Yen TM, Chen PW, Han V, Lo YH. Nucleic acid aptamers: an emerging tool for biotechnology and biomedical sensing. Sensors. 2015;15:16281–313.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kumar VGS, Urs TA, Ranganath R. MPT 64 Antigen detection for rapid confirmation of M. tuberculosis isolates. BMC Res Notes. 2011;4:1–4.CrossRefGoogle Scholar
  30. Lange MJ, Nguyen PDM, Callaway MK, Johnson MC, Burke DH. RNA-protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Res. 2017;45:6087–97.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Langer R. Drug delivery and targeting. Nature. 1998;392:5–10.PubMedPubMedCentralGoogle Scholar
  32. Lee SH, Ahn JY, Lee KA, Um HJ, Sekhon SS, Park TS, Min J, Kim YH. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens Bioelectron. 2015a;68:272–80.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW. Pharmacokinetics of a cholesterol-conjugated aptamer against the hepatitis C virus (HCV) NS5B protein. Mol Ther Nucleic Acids. 2015b;4:e254.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Levy R, Miller RA (1983) Biological and clinical implications of lymphocyte hybridomas: tumor therapy with monoclonal antibodies. Annu Rev Med. 34(1):107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Li N, Wang Y, Pothukucky A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD. Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res. 2008;36:6739–51.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Liao J, Liu B, Liu J, Zhang J, Chen K, Liu H. Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery. Expert Opin Drug Deliv. 2015;12:493–506.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an aptamer that binds specifically to E. coli. PLoS One. 2016;11:e0153637.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ni S, Yao H, Wang L, Lu J, Jiang F, Lu A, Zhang G. Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int J Mol Sci. 2017;18(8):1683.PubMedCentralCrossRefGoogle Scholar
  39. Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017;57:61–79.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Niu S, Lv Z, Liu J, Bai W, Yang S, Chen A. Colorimetric aptasensor using unmodified gold nanoparticles for homogeneous multiplex detection. PLoS One. 2014;9:1–6.Google Scholar
  41. Pan Q, Zhang XL, Wu HY, He PW, Wang F, Zhang MS, Hu JM, Xia B, Wu J. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob Agents Chemother. 2005;49:4052–60.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pan Q, Wang Q, Sun X, Xia X, Wu S, Luo F, Zhang XL, Wu S, Luo F, Zhang XL. Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus TE monkeys. Mol Ther. 2014;22:940–51.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect. 2018;77:83–98.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Peruski AH, Peruski LF. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol. 2003;10:506–13.PubMedPubMedCentralGoogle Scholar
  45. Qin L, Zheng R, Ma Z, Feng Y, Liu Z, Yang H, Wang J, Jin R, Lu J, Ding Y, Hu Z. The selection and application of ssDNA aptamers against MPT64 protein in Mycobacterium tuberculosis. Clin Chem Lab Med. 2009;47:405–11.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Qureshi A, Gurbuz Y, Niazi JH. Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens Actuat B Chem. 2015;220:1145–51.CrossRefGoogle Scholar
  47. Rasoulinejad S, Gargari SLM. Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates. J Biotechnol. 2016;231:46–54.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Santosh B, Yadava PK. Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. Biomed Res Int. 2014;2014:1–13.CrossRefGoogle Scholar
  49. Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine. 2009;27:38–46.CrossRefGoogle Scholar
  50. Shigdar S, Macdonald J, O’Connor M, Wang T, Xiang D, Al Shamaileh H, Qiao L, Wei M, Zhou SF, Zhu Y, Kong L, Bhattacharya S, Li C, Duan W. Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors. 2013;13:13624–37.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Song KM, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012;12:612–31.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Stoltenburg R, Reinemann C, Strehlitz B. SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24:381–403.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sun X, Pan Q, Yuan C, Wang Q, Tang XL, Ding K, Zhou X, Zhang XL. A single ssDNA aptamer binding to ManLAM of BCG enhances immunoprotective effects against Tuberculosis. J Am Chem Soc. 2016;138:11680–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013;48:259–71.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Swierczewska M, Lee KC, Lee S. What is the future of PEGylated therapies? Expert Opin Emerg Drugs. 2015;20:531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Syed MA. Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron. 2014;51:391–400.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Syed MA, Jamil B. Aptamers and aptasensors as novel approach for microbial detection and identification: an appraisal. Curr Drug Targets. 2018;19:1560–72.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Syed MA, Pervaiz S. Advances in Aptamers. Oligonucleotides. 2010;20:215–24.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Szeto K, Latulippe DR, Ozer A, Pagano JM, White BS, Shalloway D, Lis JT, Craighead HG. Rapid-SELEX for RNA Aptamers. PLoS One. 2013;8:1–11.Google Scholar
  60. Templier V, Roux A, Roupioz Y, Livache T. Ligands for label-free detection of whole bacteria on biosensors: a review. TrAC Trends Anal Chem. 2016;79:71–9.CrossRefGoogle Scholar
  61. Torres-chavolla E, Alocilja EC. Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron. 2009;24:3175–82.PubMedCrossRefGoogle Scholar
  62. Vivekananda J, Salgado C, Millenbaugh NJ. DNA aptamers as a novel approach to neutralize Staphylococcus aureus alpha-toxin. Biochem Biophys Res Commun. 2014;444:433–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Wang Y, Salazar K. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf. 2016;15:183–205.CrossRefGoogle Scholar
  64. Wang K, Wu D, Chen Z, Zhang X, Yang X, Yang CJ, Lan X. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon. 2016;119:21–7.PubMedCrossRefGoogle Scholar
  65. Wu W, Li M, Wang Y, Ouyang H, Wang L, Li C, Cao Y, Meng Q, Lu J. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett. 2012;7:1–7.CrossRefGoogle Scholar
  66. Yeom JH, Lee B, Kim D, Lee JK, Kim S, Bae J, Park Y, Lee K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials. 2016;104:43–51.PubMedCrossRefGoogle Scholar
  67. Zelada-Guillén GA, Riu J, Duzgun A, Rius FX. Immediate detection of living bacteria at ultra-low concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed Engl. 2009;48:7334–7.PubMedCrossRefGoogle Scholar
  68. Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, Riu J, Rius FX. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron. 2012;31:226–32.PubMedCrossRefGoogle Scholar
  69. Zhao Z, Yan R, Yi X, Li J, Rao J, Guo Z, Yang Y, Li W, Li YQ, Chen C. Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano. 2017;11(5):4428–38.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zimbres FM, Tarnok A, Ulrich H, Wregner C. Aptamers: novel molecules as diagnostic markers in bacterial and viral infections? Biomed Res Int. 2013;2:1–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bushra Jamil
    • 1
  • Nagina Atlas
    • 3
  • Asma Qazi
    • 2
  • Bushra Uzair
    • 3
  1. 1.Department of DMLSUniversity of LahoreIslamabadPakistan
  2. 2.Department of BiogeneticsNational University of Medical SciencesRawalpindiPakistan
  3. 3.Department of Biological SciencesInternational Islamic UniversityIslamabadPakistan

Personalised recommendations