Nanomaterials for Selective Targeting of Intracellular Pathogens

  • Muhammad Ali Syed
  • Nayab Ali


Many infectious diseases are caused by intracellular pathogens such as Mycobacterium tuberculosis, Salmonella enterica serovar Typhi, Listeria monocytogenes, Plasmodium species, Toxoplasma gondii, Brucella species, and Cryptococcus neoformans. Infections caused by such pathogens are treated with antimicrobial agents. Nevertheless, selective targeting of intracellular pathogens is difficult due to the reason that the drug has to enter the infected host cells in order to target or kill the infectious agent. Further, nonspecific interaction of the antimicrobial agent also affects noninfected body cells. On one side there is substantial loss of drug in the body due to nonspecific interaction while, on the other hand, many drugs find it difficult to enter the host cells. Targeted drug delivery using nanomaterials offers unique and efficient opportunity to deliver the drug loaded in the nanocarriers such as liposomes, polymeric nanoparticles, or micelles into the host cells infected with intracellular pathogens. Furthermore, sustained drug release inside the infected cells may solve the issues of bioavailability and patient compliance. Research studies conducted by different groups have shown promising results of drug-loaded nanocarriers against intracellular pathogens in a number of studies. This chapter discusses various types of intracellular pathogens, nanocarriers, and their role in targeted drug delivery of intracellular pathogens.


Intracellular pathogens Nanomaterials Nanocarriers Targeted drug delivery Liposomes 



Gold nanoparticles


Cationic antimicrobial peptides


Cell-penetrating peptides




Mononuclear phagocytic system


Mesoporous silica nanoparticles


Polyethylene glycol


Poly lactic acid


Poly lactide-co-glycolide


Polymethacrylic acid


Polymeric micelles


Parasitophorous vacuole


Salmonella containing vacuole


Solid lipid nanoparticles


Type III secretion system


  1. Abrhaley A, Mitku F. Review on targeted drug delivery against intracellular pathogen. Pharm Pharmacol Int J. 2018;6(3):183–9.Google Scholar
  2. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv. 2012;9(10):1225–43.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alavi M, Karimi N, Safae M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3(1):139–62.PubMedCrossRefGoogle Scholar
  5. Alvarez M, Casadevall A. Phagosome extrusion and host cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16:2161–5.PubMedCrossRefGoogle Scholar
  6. Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine. 2011;6:3281–93.PubMedPubMedCentralGoogle Scholar
  7. Atbiaw N, Aman E, Dessalegn B, Masrie O, Debalke B, Enbiyale G, Yirga A, Tekilu G, Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.CrossRefGoogle Scholar
  8. Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):271–99.PubMedCrossRefGoogle Scholar
  9. Baruah UK, Gowthamrajan K, Vanka R, Kari VVSK, Selvaraj K, Jo Jo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target. 2017;25:567–81.PubMedCrossRefGoogle Scholar
  10. Bei D, Meng J, Youan BC. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond). 2010;5(9):1385–99.CrossRefGoogle Scholar
  11. Brothers KM, Gratacap RL, Barker SE, Newman ZR, Norum A, Wheeler RT. NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. 2013;9:1–17.CrossRefGoogle Scholar
  12. Calderon-Colon X, Raimondi G, Benkoski JJ, Patrone JB. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. J Vis Exp. 2015;2015(105):1–8.Google Scholar
  13. Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambecke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin. 2003;17(3):615–34.CrossRefGoogle Scholar
  14. Casadevall A. Evolution of intracellular pathogens. Ann Rev Microbiol. 2008;62:19–33.CrossRefGoogle Scholar
  15. Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163–75.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun. 2006;74(2):1323–38.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen F, Ehlerdin EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen S, Zhang Q, Hou Y, Zhang J, Liang XJ. Nanomaterials in medicine and pharmaceuticals: nanoscale materials developed with less toxicity and more efficacy. Eur J Nanomed. 2013;5(2):61–79.CrossRefGoogle Scholar
  19. Choi SR, Britigan BE, Morgan DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):1–20.Google Scholar
  20. Chowdhury R, Ilyas H, Ghosh A, Ali H, Ghorai A, Midya A, Jana NR, Das S, Bhunia A. Multivalent gold nanoparticle–peptide conjugates for targeting intracellular bacterial infections. Nanoscale. 2017;9:14073–93.Google Scholar
  21. Clemens DL, Lee BY, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–45.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl Mater Interfaces. 2013;5(21):11348–54.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dalbhanjan RR, Bomble SD. Biomedical approach of nanomaterials for drug delivery. Int J Chem Chem Eng. 2013;3(2):95–100.Google Scholar
  24. De Steenwinkel JE, Van Vianen W, Ten Kate MT, Verbruch HA, Van Agtmael MA, Schifellers RA, Bakker-Woudenberg IAJM. Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice. J Antimicrob Chemother. 2007;60:1064–73.PubMedCrossRefGoogle Scholar
  25. Dehio C, Berry C, Bartenschlager R. Persistent intracellular pathogens. FEMS Microbiol Rev. 2012;36(12):513.PubMedCrossRefGoogle Scholar
  26. Delsol AA, Woodward MJ, Roe J. Effect of a 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in the pig. Antimicrob Chemother. 2004;54:692–3.CrossRefGoogle Scholar
  27. Desjardins M, Descoteaux A. Survival strategies of Leishmania donovani in mammalian host macrophages. J Immunol Res. 1998;149(7–8):689–92.CrossRefGoogle Scholar
  28. Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dolatabadi JEN, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5(2):151–9.CrossRefGoogle Scholar
  30. Dreaden EC, Austin LA, Mackey MA, El-Syed MA. Size matters: gold nanoparticles in targeted cancer delivery. Ther Deliv. 2012;3(4):457–78.PubMedPubMedCentralCrossRefGoogle Scholar
  31. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–91.PubMedCrossRefGoogle Scholar
  32. Ernst RK, Guina T, Miller SI. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis. 1999;179(2):S326–30.PubMedCrossRefGoogle Scholar
  33. Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today. 2005;8(8):18–26.CrossRefGoogle Scholar
  34. Fernandez-Busquets X. Novel strategies for Plasmodium-targeted drug delivery. Expert Opin Drug Deliv. 2016;13(7):919–22.PubMedCrossRefGoogle Scholar
  35. Gagliardi M. Novel biodegradable nanocarriers for enhanced drug delivery. Ther Deliv. 2016;7(12):809–26.PubMedCrossRefGoogle Scholar
  36. Gilbert AS, Wheeler RT, May RC. Fungal pathogens: survival and replication within macrophages. Cold Spring Harb Perspect. 2015;5:1–13.Google Scholar
  37. Giri N, Tomar P, Karwasara VS, Pandey RS, Dixit VK. Targeted novel surface-modified nanoparticles for interferon delivery for the treatment of hepatitis B. Acta Biochim Biophys Sin. 2011;43:877–83.PubMedCrossRefGoogle Scholar
  38. Gomes PS, Bhardwaj J, Correa JR, Freire-De-Lima CG. Immune Escape Strategies of malaria parasites. Front Micbiol. 2016;7:1–7.Google Scholar
  39. Gopalasatheeskuma K, Komala S, Mahalakshmi M. An overview on polymeric nanoparticles used in the treatment of diabetes mellitus. Pharma Tutor. 2017;5(12):40–6.CrossRefGoogle Scholar
  40. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–27.CrossRefGoogle Scholar
  41. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.PubMedCrossRefGoogle Scholar
  42. Hossen S, Hossain MK, Basher MK, Mia MNH, Rehman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2018;15:1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res. 2013;3:352–63.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012;339:303–5.CrossRefGoogle Scholar
  45. Ibarra JA, Mortimer OS. Salmonella—the ultimate insider Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 2009;11(11):1579–86.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jagtap P, Sritharan V, Gupta S. Nanotheranostic approaches for management of bloodstream bacterial infections. Nanomedicine. 2017;13(1):329–41.CrossRefGoogle Scholar
  47. Kamaruzzaman F, Kendall S. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 2017;174:2225–36.PubMedCrossRefGoogle Scholar
  48. Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng. 2018;9:105–27.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6:714–29.PubMedCrossRefGoogle Scholar
  50. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.PubMedCrossRefGoogle Scholar
  51. Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:1–11.CrossRefGoogle Scholar
  52. Kim JS. Liposomal drug delivery system. J Pharm Investig. 2016;46(4):387–92.CrossRefGoogle Scholar
  53. Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, Wong VK, Dallman TJ, Nair S, Baker S, Shaheen G, Qureshi S, Yousafzai MT, Saleem MK, Hasan Z, Dougan G, Hasan R. Emergence of an extensively drug resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio. 2018;9(1):1–10.CrossRefGoogle Scholar
  54. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1–13.Google Scholar
  55. Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–91.PubMedCrossRefGoogle Scholar
  56. Ladaviere C, Gref R. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Fut Med. 2015;10(9):3033–55.Google Scholar
  57. Lamprecht A, Urich N, Yamamoto H, Schaefer U, Takeuchi H, Maincent P, Kawashima Y, Lehr CM. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther. 2001;299(2):775–81.PubMedGoogle Scholar
  58. Lemmer Y, Kalombo L, Pietersen DY, Jones AT, Semete-Makokotlela B, Wyngaardt SV, Ramalapa B, Stoltz AC, Baker B, Verschoor JA, Swai HS, Chastellier C. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94–104.PubMedCrossRefGoogle Scholar
  59. Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives (review). Oncol Rep. 2017;38:611–24.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem. 2015;15(15):1525–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu P, Xu LQ, Xu G, Pranantyo D, Neoh KG, Kang ET. pH-sensitive theranostic nanoparticles for targeting bacteria with fluorescence imaging and dual-modal antimicrobial therapy. ACS Appl Nano Mater. 2018;1:6187–96.CrossRefGoogle Scholar
  62. Mauel J. Mechanisms of survival of protozoan parasites in mononuclear phagocytes. Parasitology. 1984;88(4):579–92.PubMedCrossRefGoogle Scholar
  63. Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 2001;45(11):2977–86.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Miller LH, Good MF, Milon G. Malaria pathogenesis. Science. 1994;264(5167):1878–83.PubMedCrossRefGoogle Scholar
  65. Mishra V, Bansal K, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm J. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):1–21.CrossRefGoogle Scholar
  66. Moles E, Moll K, Ching JH, Parini P, Wahgren M, Busquest X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release. 2016;241:57–67.PubMedCrossRefGoogle Scholar
  67. Moritz M, Gezske-Moritz M. Recent developments in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med. 2015;24(5):749–58.PubMedCrossRefGoogle Scholar
  68. Morton CO, Bouzani M, Loeffler J, Rogers TR. Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity? Front Microbiol. 2012;3(413):1–7.Google Scholar
  69. Mudakavi RJ, Vanamali S, Chakarvortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv. 2017;7:7022–32.CrossRefGoogle Scholar
  70. Mukherjee S, Das L, Kole L, Karmakar S, Datta N, Das K. Targeting of parasite-specific immunoliposome encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis. J Infect Dis. 2004;189:124–34.CrossRefGoogle Scholar
  71. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar SG. Different techniques for preparation of polymeric nanoparticles –a review. Asian J Pharm Clin Res. 2012;5(3):16–23.Google Scholar
  73. Niller HH, Masa R, Venkei A, Meszaros S, Minarovits J. Pathogenic mechanisms of intracellular bacteria. Curr Opin Infect Dis. 2017;30(3):309–15.PubMedCrossRefGoogle Scholar
  74. Oeztuerk-Atar K, Eroglu H, Calis S. Novel advances in targeted drug delivery. J Drug Target. 2018;26:633–42.CrossRefGoogle Scholar
  75. Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101(9):3551–65.PubMedCrossRefGoogle Scholar
  76. Patel SK, Janjic JM. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics. 2015;5:150.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Paulo CSO, Neves RP, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. Nanotechnology. 2011;22:1–12.CrossRefGoogle Scholar
  78. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.PubMedCrossRefGoogle Scholar
  79. Ranjan A, Pothayee N, Saleem MN, Boyle SM, Kasimnickam R, Riffle JS, Sriranganathan N. Nanomedicine for intracellular therapy. FEMS Microbiol Lett. 2012;332:1–9.PubMedCrossRefGoogle Scholar
  80. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24:1159–66.PubMedCrossRefGoogle Scholar
  81. Ruggiero C, Pastorino L, Herrera OL. Nanotechnology based targeted drug delivery, 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31–September 4, 2010.Google Scholar
  82. Saleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett. 2009a;294(1):24–31.CrossRefGoogle Scholar
  83. Saleem MN, Munosamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N. Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrob Agents Chemother. 2009b;53(10):4270–4.CrossRefGoogle Scholar
  84. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(7):1–19.Google Scholar
  85. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:1–13.Google Scholar
  86. Sibley LD, Weidner E, Krahenbuhl JL. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature. 1985;315:416–9.CrossRefGoogle Scholar
  87. Silva M. Classical labelling of bacterial pathogens according to their lifestyle in the host: inconsistencies and alternatives. Front Microbiol. 2012;3:1–7.CrossRefGoogle Scholar
  88. Singh L, Parboosing R, Kruger HG, Maguire GEM, Govender T. Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes. Adv Nat Sci Nanosci Nanotechnol. 2016;7:1–8.Google Scholar
  89. Singh R, Lilliard JW. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Exp Mol Pathol. 2009;86(3):215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–17.PubMedCrossRefGoogle Scholar
  91. Spinosa MR, Progida C, Tala A, Cogli L, Alifano P, Bucci C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun. 2007;75(7):3594–603.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Syed MA, Bokhari SH. Gold nanoparticles based microbial detection and identification. J Biomed Nanotechnol. 2011;7(2):229–37.PubMedCrossRefGoogle Scholar
  93. Tan BH, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa MT, Krutzik SR, Bloom BR, Ganz T, Modlin RL, Stenger S. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol. 2006;177(3):1864–71.PubMedCrossRefGoogle Scholar
  94. Thakkar M, Brijesh S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6(4):414–25.PubMedGoogle Scholar
  95. Thi EP, Lambertz U, Reiner NE. Sleeping with the enemy: how intracellular pathogens cope with a macrophage lifestyle. PLoS Pathog. 2012;2012(8):1–4.Google Scholar
  96. Toledo DAM, Avila HD, Melo RCN. Host lipid bodies as platforms for intracellular survival of protozoan parasites. Front Immunol. 2016;7(174):1–6.Google Scholar
  97. Toti US, Guru BR, Hali M, McPharlin C, Wykes SM, Panyam J, Whittum-Hudson JA. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Uddin F, Aman W, Ullah I, Qureshi US, Mustapha U, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309.CrossRefGoogle Scholar
  99. Ueno N. Host and parasite determinants of Leishmania survival following phagocytosis by macrophages. PhD (Doctor of Philosophy) thesis, University of Iowa; 2011Google Scholar
  100. Urban P, Estelrich J, Adeva A, Cortes A, Fernandez-Busquets X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomalanovectors. Nanoscale Res Lett. 2011;6:1–9.CrossRefGoogle Scholar
  101. Urban P, Ranucci E, Fernandez-Busquets X. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector. Nanomedicine. 2015;10(22):3401–14.PubMedCrossRefGoogle Scholar
  102. Urban P, Valle Delgado JJ, Mauro N, Marques J, Manfredi A, Rottmann M, Ranucci E, Ferruti P, Fernandez-Busquets X. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J Control Release. 2014;177:84–95.PubMedCrossRefGoogle Scholar
  103. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther. 2017;42(12):742–55.Google Scholar
  104. Vieira ACC, Magalhaes J, Rocha S, Cardoso MS, Santos SG, Borges M, Pinheiro M, Reis S. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 2017;12(24):2721–36.PubMedCrossRefGoogle Scholar
  105. Walburger A, Koul A, Ferrari G, Nguyen L, Baschong CP, Huygen K, Klebal B, Thomson C, Bacher G, Pieters J. Protein kinase G from pathogenic Mycobacteria promotes survival within macrophages. Science. 2004;304:1800–4.PubMedCrossRefGoogle Scholar
  106. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–79.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Xie S, Tao Y, Pan Y, Qu W, Cheng G, Huang L, Chen D, Wang X, Liu Z, Yuan Z. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control Release. 2014;187:101–17.PubMedCrossRefGoogle Scholar
  108. Xie S, Yang F, Tao Y, Chen D, Qu W, Huang L, Liu Z, Pan Y, Yuan Z. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep. 2017;7:1–9.CrossRefGoogle Scholar
  109. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:1–13.CrossRefGoogle Scholar
  110. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42(2):530–47.PubMedCrossRefGoogle Scholar
  111. Ye J, Liu E, Yu Z, Pei X, Chen S, Zhang P, Shin MC, Gong J, He H, Yang VC. CPP-assisted intracellular drug delivery, what is next? Int J Mol Sci. 2016;17(1892):1–16.Google Scholar
  112. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016;2016:1–16.Google Scholar
  113. Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS Pharm Sci Tech. 2014;15(4):862–71.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Ali Syed
    • 1
  • Nayab Ali
    • 1
  1. 1.Department of MicrobiologyThe University of HaripurHaripurPakistan

Personalised recommendations