Theranostic Nanoplatforms as a Promising Diagnostic and Therapeutic Tool for Staphylococcus aureus

  • Bushra UzairEmail author
  • Anum Shaukat
  • Safa Mariyam


The Gram-positive microorganism Staphylococcus aureus is the major infective agent responsible for life-threatening infections. Staphylococcus aureus have developed resistance against last resort therapeutics. Nonetheless, there is a great urge to synthesize novel antimicrobial agents with proficient activity and great biocompatibility for clinical administrations. Advanced technologies emphasize more on detecting and identifying diseases for successful therapy combined with the diagnostic agents itself. Theranostics is a novel approach in which the exact treatment is conjugated with specific diagnostic tests. With a key spotlight on patient-focused consideration, theranostics alter traditional prescription to a contemporary personalized and accurate medicine approach. The research has been supported toward the development of enhanced imaging agents as carbon quantum dots, nanoparticles, and other new theranostic drugs. Better diagnosis helps in prescreening the profile of target particles to create biomarkers dependent on disease-specific therapy, thus making it less expensive with less off-target toxicity and high efficiency and specificity with continuous analysis for detailed observation and guidance and examining impacts and side effects to develop further alternatives. In this chapter, numerous theranostics methods are discussed to cure ailments caused by Staphylococcus aureus.


Staphylococcus aureus Theranostics Bacterial imaging Antibacterial activity Nanotechnology Bacterial infections 


  1. Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377:228–41.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Argudín MA, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010;2:1751–73.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bangert S, Levy M, Hebert AA. Bacterial resistance and impetigo treatment trends: a review. Pediatr Dermatol. 2012;29:243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barata JF, Pinto RJ, Vaz Serra VI, Silvestre AJ, Trindade T, Neves MG, Cavaleiro JA, Daina S, Sadocco P, Freire CS. Fluorescent bioactive corrole grafted-chitosan films. Biomacromolecules. 2016;17:1395–403.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bazzaz BSF, Khameneh B, Jalili-Behabadi MM, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont Lens Anterior Eye. 2014;37:149–52.CrossRefGoogle Scholar
  6. Bhattacharya S, Samanta SK. Soft-nanocomposites of nanoparticles and nanocarbons with supramolecular and polymer gels and their applications. Chem Rev. 2016;116:11967–2028.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bilung LM, Tahar AS, Kira R, Rozali AM, Apun K. High occurrence of Staphylococcus aureus isolated from fitness equipment from selected gymnasiums. J Environ Public Health. 2018;2018:1–5.CrossRefGoogle Scholar
  8. Boelaert JR, Daneels RF, Schurgers ML, Matthys EG, Gordts BZ, Van Landuyt HW. Iron overload in haemodialysis patients increases the risk of bacteraemia: a prospective study. Nephrol Dial Transplant. 1990;5:130–4.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron. 2016;86:27–32.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Boswihi SS, Udo EE. Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. Curr Med Res Pract. 2018;8:18–24.CrossRefGoogle Scholar
  11. Bruno JG. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules. 2015;20:6866–87.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;11:4651–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 2009;37:4621–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cavalieri F, Tortora M, Stringaro A, Colone M, Baldassarri L. Nanomedicines for antimicrobial interventions. J Hosp Infect. 2014;88:183–90.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen S, Li Q, Wang X, Yang Y, Gao H. Multifunctional bacterial imaging and therapy systems. J Mater Chem B. 2018;6:5198–214.CrossRefGoogle Scholar
  16. Chen Z, Yuan H, Liang H. Synthesis of multifunctional cationic poly (p-phenylenevinylene) for selectively killing bacteria and lysosome-specific imaging. ACS Appl Mater Interfaces. 2017;9:9260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cheng D, Yu M, Fu F, Han W, Li G, Xie J. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal Chem. 2016;88:820–5.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Corey GR. Staphylococcus aureus bloodstream infections: definitions and treatment. Clin Infect Dis. 2009;48:254–9.CrossRefGoogle Scholar
  19. Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Appl Mater Interfaces. 2016;8:25798–807.PubMedCrossRefPubMedCentralGoogle Scholar
  20. DeGrasse JA. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One. 2012;7:e33410.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ferreira IM, de Souza Lacerda CM, de Faria LS, Correa CR, de Andrade AS. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl Biochem Biotechnol. 2014;174:2548–56.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fitzgerald SF, O’Gorman J, Morris-Downes MM, Crowley RK, Donlon S, Bajwa R, Smyth EG, Fitzpatrick F, Conlon PJ, Humphreys H. A 12-year review of Staphylococcus aureus bloodstream infections in haemodialysis patients: more work to be done. J Hosp Infect. 2011;79:218–21.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gao M, Hu Q, Feng G, Tomczak N, Liu R, Xing B, Tang BZ, Liu B. A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. Adv Healthc Mater. 2015;4:659–63.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gao T, Zeng H, Xu H, Gao F, Li W, Zhang S, Liu Y, Luo G, Li M, Jiang D, Chen Z, Wu Y, Wang W, Zeng W. Novel self-assembled organic nanoprobe for molecular imaging and treatment of gram-positive bacterial infection. Theranostics. 2018;8(7):1911–22.PubMedPubMedCentralCrossRefGoogle Scholar
  25. García-Álvarez L, Holden MT, Lindsay H. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11:595–603.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hennekinne JA, Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36:815–36.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hua XW, Bao YW, Wang HY, Chen Z, Wu FG. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale. 2017;9:2150–61.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Huang Y, Chen X, Duan N, Wu S, Wang Z, Wei X, Wang Y. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chem. 2015;166:623–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Jevons MP. Celbenin-resistant staphylococci. BMJ. 1961;1:124–5.CrossRefGoogle Scholar
  30. Kavruk M, Celikbicak O, Ozalp VC, Borsa BA, Hernandez FJ, Bayramoglu G. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem Commun (Camb). 2015;51:8492–5.CrossRefGoogle Scholar
  31. Khameneh B, Diab R, Ghazvini K, Bazzaz BSF. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathogen. 2016;95:32–42.CrossRefGoogle Scholar
  32. Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C. Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials. 2012;33:1714–21.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362–81.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006;6:468–72.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Meziani MJ, Dong XL, Zhu L, Jones LP, LeCroy GE, Yang F, Wang SY, Wang P, Zhao YP, Yang LJ, Tripp RA, Sun YP. ACS Appl Mater Interfaces. 2016;8:10761–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4:316–35.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Natan M, Banin E. From nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev. 2017;41:302–22.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ocsoy I, Yusufbeyoglu S, Yilmaz V, McLamore ES, Ildiz N, Ulgen A. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-resistant Staphylococcus aureus. Colloids Surf B Biointerfaces. 2017;159:16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Oethinger M, Warner DK, Schindler SA, Kobayashi H, Bauer TW. Diagnosing periprosthetic infection: false-positive intraoperative Gram stains. Clin Orthop Relat Res. 2011;469:954–60.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect. 2018;77:83–98.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Paterson GK, Morgan FJE, Harrison EM. Prevalence and characterization of human mecC methicillin-resistant Staphylococcus aureus isolates in England. J Antimicrob Chemother. 2014;69:907–10.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol. 2013;11:667.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ragle BE, Karginov VA, Wardenburg JB. Prevention and treatment of Staphylococcus aureus pneumonia with a β-cyclodextrin derivative. Antimicrob Agents Chemother. 2010;54(1):298–304.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Rasigade JP, Vandenesch F. Staphylococcus aureus: a pathogen with still unresolved issues. Infect Genet Evol. 2014;21:510–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Reller LB, Weinstein MP, Petti CA. Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis. 2007;44:1108–14.CrossRefGoogle Scholar
  47. Shanson DC. Antibiotic-resistant Staphylococcus aureus. J Hosp Infect. 1981;2:11–36.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26:422–47.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Stoltenburg R, Schubert T, Strehlitz B. In vitro selection and interaction studies of a DNA aptamer targeting protein a. PLoS One. 2015;10:e0134403.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013;48:259–71.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Taylor TA, Unakal CG. Staphylococcus aureus. StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.Google Scholar
  52. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2019;28:603–61.CrossRefGoogle Scholar
  53. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Shah PP, CarugatI M, Holland TL. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17:203–18.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Vanholder R, Ringoir S, Dhondt A, Hakim R. Phagocytosis in uremic and hemodialysis patients: a prospective and cross sectional study. Kidney Int. 1991;39:320–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Vivekananda J, Salgado C, Millenbaugh NJ. DNA aptamers as a novel approach to neutralize Staphylococcus aureus alpha-toxin. Biochem Biophys Res Commun. 2014;444:433–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Waldvogel FA, Medoff G, Swartz MN. Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects. N Engl J Med. 1970;282:198–206.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Wang J, Wu H, Yang Y, Yan R, Zhao Y, Wang Y. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection. Nanoscale. 2017;10:132–41.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Wang M, Zhou C, Chen J, Xiao Y, Du J. Multifunctional biocompatible and biodegradable folic acid conjugated poly (ε-caprolactone)–polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjug Chem. 2015;26:725–34.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Westberg M, Grogaard B, Snorrason F. Early prosthetic joint infections treated with debridement and implant retention: 38 primary hip arthroplasties prospectively recorded and followed for median 4 years. Acta Orthop. 2012;83:227–32.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Xie S, Manuguria S, Proiettia G, Romsona J, Fub Y, Ingec AK, Wud B, Zhanga Y, Hälla D, Ramströma O, Yana M. Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proc Natl Acad Sci USA. 2017;114:8464–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Zhang X, Chen X, Yang J, Jia HR, Li YH, Chen Z, Wu FG. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing gram-positive bacteria. Adv Fun Mat. 2016;26:5958–70.CrossRefGoogle Scholar
  62. Zhao Z, Yan R, Yi X, Li J, Rao J, Guo Z, Yang Y, Li W, Li YQ, Chen C. Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano. 2017;11:4428–38.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zimakoff J, Bangsgaard PF, Bergen L, Baago-Nielsen J, Daldorph B, Espersen F, Gahrn Hansen B, Hoiby N, Jepsen OB, Joffe P, Kolmos HJ, Klausen M, Kristoffersen K, Ladefoged J, Olesen-Larsen S, Rosdahl VT, Scheibel J, Storm B, Tofte-Jensen P. Staphylococcus aureus carriage and infections among patients in four haemo- and peritoneal-dialysis centres in Denmark. The Danish Study Group of Peritonitis in Dialysis (DASPID). J Hosp Infect. 1996;33:289–300.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesInternational Islamic UniversityIslamabadPakistan

Personalised recommendations