Advertisement

Nanotheranostics Approaches in Antimicrobial Drug Resistance

  • Juan Bueno
Chapter

Abstract

The theranostics as a combination of diagnosis and therapy is a trend of personalized medicine that seeks to develop a precision medical care, also this approach has found in nanotechnology a possibility for the conjugation of several molecules with different functionalities that will allow diagnosis, treatment, monitoring, and prediction of the patient condition in the same nanosystem. Equally, fields such as biosensors and novel therapies and thermotherapy have been integrated into the multiple variants that this platform presents. It is thus that as before the technological developments should be the problems where the designed solutions are practiced, and nanotheranostics can be used in a multidisciplinary way to address one of the major public health problems such as antimicrobial resistance. This implies not only developing tools to detect the infectious disease, it also requires introducing medications and treatment alternatives; in the same way the devices implemented must act to prevent the appearance and spread of pathogens. Similarly, by means of nanotheranostic it will be possible to have more sophisticated and effective antimicrobial and vaccination protocols that will allow an adequate control of the microorganisms causing disease. Finally, in this chapter, the different approaches with translational possibility that this exciting field of nanobiotechnology has allowed to face the great health threats of our time will be integrated in a multi-trans-interdisciplinary approach.

Keywords

Theranostics Nanotechnology Biosensors Pharmacogenomics Antimicrobial drug resistance 

Notes

Acknowledgment

The author thanks to CF Honeypot for her collaboration and invaluable support during the writing of this chapter.

References

  1. Ansari MO, Ahmad MF, Shadab GGHA, Siddique HR. Superparamagnetic iron oxide nanoparticles based cancer theranostics: a double edge sword to fight against cancer. J Drug Deliv Sci Technol. 2018;45:177–83.CrossRefGoogle Scholar
  2. Arduini F, Cinti S, Scognamiglio V, Moscone D. Based electrochemical devices in biomedical field: recent advances and perspectives. Compr Anal Chem. 2017;77:385–413.CrossRefGoogle Scholar
  3. Arnold FH. Directed evolution: bringing new chemistry to life. Angew Chem Int Ed. 2018;57:4143–8.CrossRefGoogle Scholar
  4. Ashrafuzzaman M. Aptamers as both drugs and drug-carriers. Biomed Res Int. 2014;2014:697923.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Avcıbaşı U, Demiroğlu H, Sakarya S, Tekin V, Ateş B. The effect of radiolabeled antibiotics on biofilm and microorganism within biofilm. J Radioanal Nucl Chem. 2018;316:275–87.CrossRefGoogle Scholar
  6. Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol. 2018;9:1441.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, Audouze K, Slama R, Heindel J, Grandjean P, Kawamoto T, Nohara K. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int. 2018;114:77–86.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barroso Á, Grüner M, Forbes T, Denz C, Strassert CA. Spatiotemporally resolved tracking of bacterial responses to ROS-mediated damage at the single-cell level with quantitative functional microscopy. ACS Appl Mater Interfaces. 2016;8:15046–57.PubMedCrossRefGoogle Scholar
  9. Bartlett G, Antoun J, Zgheib NK. Theranostics in primary care: pharmacogenomics tests and beyond. Expert Rev Mol Diagn. 2012;12:841–55.PubMedCrossRefGoogle Scholar
  10. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12:143–61.PubMedCrossRefGoogle Scholar
  11. Bueno J. Biosensors in antimicrobial drug discovery: since biology until screening platforms. J Microb Biochem Technol. 2014;S10:2.Google Scholar
  12. Bueno J. The future of metabolomics and individual monitoring in antimicrobial therapy. J Microb Biochem Technol. 2017;9:e132.CrossRefGoogle Scholar
  13. Burnham CAD, Leeds J, Nordmann P, O’Grady J, Patel J. Diagnosing antimicrobial resistance. Nat Rev Microbiol. 2017;15:697–703.PubMedCrossRefGoogle Scholar
  14. Cao B, Xiao F, Xing D, Hu X. Polyprodrug antimicrobials: remarkable membrane damage and concurrent drug release to combat antibiotic resistance of methicillin-resistant Staphylococcus aureus. Small. 2018;14:1802008.CrossRefGoogle Scholar
  15. Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261–79.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen Y, Feng Y, Deveaux JG, Masoud MA, Chandra FS, Chen H, Zhang D, Feng L. Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review. Fortschr Mineral. 2019;9:68.CrossRefGoogle Scholar
  17. Chitgupi U, Qin Y, Lovell JF. Targeted nanomaterials for phototherapy. Nano. 2017;1:38–58.Google Scholar
  18. Col SDL, Brig VKR. Bioterrorism: a public health perspective. Med J Armed Forces India. 2010;66:255–60.CrossRefGoogle Scholar
  19. Courbet A, Renard E, Molina F. Bringing next-generation diagnostics to the clinic through synthetic biology. EMBO Mol Med. 2016;8:987–91.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Craciun AM, Focsan M, Magyari K, Vulpoi A, Pap Z. Surface plasmon resonance or biocompatibility—key properties for determining the applicability of noble metal nanoparticles. Materials. 2017;10:836.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl Mater Interfaces. 2013;5:11348–54.PubMedCrossRefPubMedCentralGoogle Scholar
  22. De Matteis V, Cascione M, Toma C, Leporatti S. Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nano. 2018;8:319.Google Scholar
  23. Drain P, Hyle E, Noubary F, Freedberg K, Wilson D, Bishai W, Rodriguez W, Bassett I. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14:239–49.PubMedCrossRefGoogle Scholar
  24. Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, Rundén-Pran E, Smolkova B. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: new strategies for toxicity testing? Food Chem Toxicol. 2017;109:797–811.PubMedCrossRefGoogle Scholar
  25. El Bairi K, Atanasov AG, Amrani M, Afqir S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed Pharmacother. 2019;109:2492–8.PubMedCrossRefGoogle Scholar
  26. Elsabahy M, Wooley KL. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc Chem Res. 2015;48:1620–30.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Evangelopoulos M, Parodi A, Martinez J, Tasciotti E. Trends towards biomimicry in theranostics. Nano. 2018;8:637.Google Scholar
  28. Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K. Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol. 2018;13:537–43.PubMedCrossRefGoogle Scholar
  29. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.CrossRefGoogle Scholar
  30. Gao T, Zeng H, Xu H, Gao F, Li W, Zhang S, Liu Y, Luo G, Li M, Jiang D, Chen Z, Wu Y, Wang W, Zeng W. Novel self-assembled organic nanoprobe for molecular imaging and treatment of gram-positive bacterial infection. Theranostics. 2018;8:1911–22.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ge H, Zhang J, Yuan Y, Liu J, Liu R, Liu X. Preparation of organic–inorganic hybrid silica nanoparticles with contact antibacterial properties and their application in UV-curable coatings. Prog Org Coat. 2017;106:20–6.CrossRefGoogle Scholar
  32. Goes A, Fuhrmann G. Biogenic and biomimetic carriers as versatile transporters to treat infections. ACS infectious diseases. 2018;4:881–92.PubMedCrossRefGoogle Scholar
  33. Gomes IB, Meireles A, Gonçalves AL, Goeres DM, Sjollema J, Simões LC, Simões M. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Crit Rev Biotechnol. 2018;38:657–70.PubMedCrossRefGoogle Scholar
  34. Gonzalez-Delgado JA, Kennedy PJ, Ferreira M, Tome JP, Sarmento B. Use of photosensitizers in semisolid formulations for microbial photodynamic inactivation: miniperspective. J Med Chem. 2015;59:4428–42.PubMedCrossRefGoogle Scholar
  35. Gonzalez-Hunt C, Wadhwa M, Sanders LH. DNA damage by oxidative stress: measurement strategies for two genomes. Curr Opin Toxicol. 2018;7:87–94.CrossRefGoogle Scholar
  36. Grumezescu A, Gesta M, Holban A, Grumezescu V, Vasile B, Mogoanta L, Iordache F, Bleotu C, Dan Mogosanu G. Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against gram-positive and gram-negative bacteria. Molecules. 2014;19:5013–27.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gupta S, Ramesh K, Ahmed S, Kakkar V. Lab-on-Chip Technology: a review on design trends and future scope in biomedical applications. Int J Bio Sci Bio Technol. 2016;8:311–22.CrossRefGoogle Scholar
  38. Gustafsson OJR, Guinan TM, Rudd D, Kobus H, Benkendorff K, Voelcker NH. Metabolite mapping by consecutive nanostructure and silver-assisted mass spectrometry imaging on tissue sections. Rapid Commun Mass Spectrom. 2017;31:991–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci. 2018;17:1515–33.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hauser M, Li G, Nowack B. Environmental hazard assessment for polymeric and inorganic nanobiomaterials used in drug delivery. J Nanobiotechnol. 2019;17:56.CrossRefGoogle Scholar
  41. He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55.PubMedPubMedCentralCrossRefGoogle Scholar
  42. He X, McLean J, Guo L, Lux R, Shi W. The social structure of microbial community involved in colonization resistance. ISME J. 2014;8:564–74.PubMedCrossRefGoogle Scholar
  43. Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017;12:8211–25.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hillger JM, Lieuw WL, Heitman LH, IJzerman AP. Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today. 2017;22:1808–15.PubMedCrossRefGoogle Scholar
  45. Huang CJ, Chu SH, Wang LC, Li CH, Lee TR. Bioinspired zwitterionic surface coatings with robust photostability and fouling resistance. ACS Appl Mater Interfaces. 2015;7:23776–86.PubMedCrossRefGoogle Scholar
  46. Huma ZE, Gupta A, Javed I, Das R, Hussain SZ, Mumtaz S, Hussain I, Rotello VM. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega. 2018;3:16721–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Inoue H, Minghui R. Antimicrobial resistance: translating political commitment into national action. Bull World Health Organ. 2017;95:242–242A.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Iriya R, Syal K, Jing W, Mo M, Yu H, Haydel SE, Wang S, Tao N. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. J Biomed Opt. 2017;22:126002.Google Scholar
  49. Jagtap P, Sritharan V, Gupta S. Nanotheranostic approaches for management of bloodstream bacterial infections. Nanomedicine. 2017;13:329–41.PubMedCrossRefGoogle Scholar
  50. Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: a review. J Control Release. 2018;283:1–19.PubMedCrossRefGoogle Scholar
  51. Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not? Proc R Soc B Biol Sci. 2017;284:20162562.CrossRefGoogle Scholar
  52. Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Goranthia S, Bronich T, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev. 2018; S0169-409X(18): 30261–8Google Scholar
  53. Khalid N, Kobayashi I, Nakajima M. Recent lab-on-chip developments for novel drug discovery. Wiley Interdiscip Rev Syst Biol Med. 2017;9:e1381.CrossRefGoogle Scholar
  54. Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven polymer nanofiber coatings that inhibit quorum sensing in Staphylococcus aureus: toward new nonbactericidal approaches to infection control. ACS Infect Dis. 2017;3:271–80.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Krausz A, Adler B, Cabral V, Navati M, Doerner J, Charafeddine R, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman J, Nosanchuk J, Friedman A. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 2015;11:195–206.PubMedCrossRefGoogle Scholar
  56. Lagarce F. Nanomedicines: are we lost in translation? Eur J Nanomed. 2015;7:77–8.CrossRefGoogle Scholar
  57. Lai J, Shah BP, Zhang Y, Yang L, Lee KB. Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano. 2015;9:5234–45.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016;33:1055–73.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lee S, Lin M, Lee A, Park Y. Lanthanide-doped nanoparticles for diagnostic sensing. Nano. 2017;7:411.Google Scholar
  60. Li Q, Wu Y, Lu H, Wu X, Chen S, Song N, Yang Y, Gao H. Construction of supramolecular nanoassembly for responsive bacterial elimination and effective bacterial detection. ACS Appl Mater Interfaces. 2017;9:10180–9.PubMedCrossRefGoogle Scholar
  61. Liao JF, Lee JC, Lin CK, Wei KC, Chen PY, Yang HW. Self-assembly DNA polyplex vaccine inside dissolving microneedles for high-potency intradermal vaccination. Theranostics. 2017;7(10):2593–605.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Linko V, Ora A, Kostiainen MA. DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol. 2015;33:586–94.PubMedCrossRefGoogle Scholar
  63. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:3702518.CrossRefGoogle Scholar
  64. Lu R, Zou W, Du H, Wang J, Zhang S. Antimicrobial activity of Ag nanoclusters encapsulated in porous silica nanospheres. Ceram Int. 2014;40:3693–8.CrossRefGoogle Scholar
  65. Lundquist CM, Loo C, Meraz IM, Cerda JDL, Liu X, Serda RE. Characterization of free and porous silicon-encapsulated superparamagnetic iron oxide nanoparticles as platforms for the development of theranostic vaccines. Med Sci (Basel). 2014;2:51–69.Google Scholar
  66. Ma W, Cheetham AG, Cui H. Building nanostructures with drugs. Nano Today. 2016;11:13–30.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Madni A, Noreen S, Maqbool I, Rehman F, Batool A, Kashif PM, Rehman M, Tahir N, Khan MI. Graphene-based nanocomposites: synthesis and their theranostic applications. J Drug Target. 2018;26:858–83.PubMedCrossRefGoogle Scholar
  68. Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Rev. 2018;31:e00084-16.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martínez-Carmona M, Gun’ko Y, Vallet-Regí M. ZnO nanostructures for drug delivery and theranostic applications. Nano. 2018;8:268.Google Scholar
  70. Mauk M, Song J, Liu C, Bau H. Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests. Biosensors. 2018;8:17.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Meeker DG, Wang T, Harrington WN, Zharov VP, Johnson SA, Jenkins SV, Oyibo SE, Walker CM, Mills WB, Shirtliff ME, Beenken KE, Chen J, Smeltzer MS. Versatility of targeted antibiotic-loaded gold nanoconstructs for the treatment of biofilm-associated bacterial infections. Int J Hyperth. 2018;34:209–19.CrossRefGoogle Scholar
  72. Mirahmadi-Zare SZ, Allafchian AR, Jalali SAH. Core–shell fabrication of an extra-antimicrobial magnetic agent with synergistic effect of substrate ligand to increase the antimicrobial activity of Ag nanoclusters. Environ Prog Sustain Energy. 2019;38:237–45.CrossRefGoogle Scholar
  73. Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol. 2017;15:25.CrossRefGoogle Scholar
  74. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov. 2017;16:531.PubMedCrossRefGoogle Scholar
  75. Molefe P, Masamba P, Oyinloye B, Mbatha L, Meyer M, Kappo A. Molecular application of aptamers in the diagnosis and treatment of cancer and communicable diseases. Pharmaceuticals. 2018;11:93.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, Saqalein M, Atif M, Sarwar A, Khurshid A, Amin N, Wang Z. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front Biosci (Elite Ed). 2018;10:352–74.Google Scholar
  77. Narayan R, Nayak U, Raichur A, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118.PubMedCentralCrossRefPubMedGoogle Scholar
  78. Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–28.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opinion Solid State Mater Sci. 2017;21:43–53.CrossRefGoogle Scholar
  80. Nine MJ, Cole MA, Tran DN, Losic D. Graphene: a multipurpose material for protective coatings. J Mater Chem A. 2015;3:12580–602.CrossRefGoogle Scholar
  81. Nowlin K, LaJeunesse DR. Fabrication of hierarchical biomimetic polymeric nanostructured surfaces. Mol Syst Design Eng. 2017;2:201–13.CrossRefGoogle Scholar
  82. Pang T. Theranostics, the 21st century bioeconomy and ‘one health’. Expert Rev Mol Diagn. 2012;12:807–9.CrossRefGoogle Scholar
  83. Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials. 2015;5:1853–79.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.PubMedCrossRefGoogle Scholar
  85. Pirmohamed M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet. 2014;15:349–70.PubMedCrossRefGoogle Scholar
  86. Pramanik A, Jones S, Pedraza F, Vangara A, Sweet C, Williams M, Ruppa-Kasani V, Risher S, Sardar D, Ray P. Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs. ACS Omega. 2017;2:554–62.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pranantyo D, Xu LQ, Kang ET, Chan-Park MB. Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromolecules. 2018;19:2156–65.PubMedCrossRefGoogle Scholar
  88. Primiceri E, Chiriacò MS, Notarangelo FM, Crocamo A, Ardissino D, Cereda M, Bramanti AP, Bianchessi MA, Giannelli G, Maruccio G. Key enabling technologies for point-of-care diagnostics. Sensors. 2018;18:3607.CrossRefGoogle Scholar
  89. Qu W, Li N, Yu R, Zuo W, Fu T, Fei W, Hou Y, Liu Y, Yang J. Cationic DDA/TDB liposome as a mucosal vaccine adjuvant for uptake by dendritic cells in vitro induces potent humoural immunity. Artif Cells Nanomed Biotechnol. 2018;46:852–60.PubMedCrossRefGoogle Scholar
  90. Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. 2016;2016:1851242.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rello J, van Engelen TSR, Alp E, Calandra T, Cattoir V, Kern WV, Netea MG, Nseir S, Opal SM, van de Veerdonk FL, Wilcox MH, Wiersinga WJ. Towards precision medicine in sepsis: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect. 2018;24:1264–72.PubMedCrossRefGoogle Scholar
  92. Ribeiro SM, Felício MR, Boas EV, Gonçalves S, Costa FF, Samy RP, Santos NC, Franco OL. New frontiers for anti-biofilm drug development. Pharmacol Ther. 2016;160:133–44.PubMedCrossRefGoogle Scholar
  93. Roco M, Mirkin C, Hersam M. Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res. 2011;13:897–919.CrossRefGoogle Scholar
  94. Ruiz SI, El-Gendy N, Bowen LE, Berkland C, Bailey MM. Formulation and characterization of nanocluster ceftazidime for the treatment of acute pulmonary melioidosis. J Pharm Sci. 2016;105:3399–408.PubMedCrossRefGoogle Scholar
  95. Sabhachandani P, Sarkar S, Zucchi PC, Whitfield BA, Kirby JE, Hirsch EB, Konry T. Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging. Microchim Acta. 2017;184:4619–28.CrossRefGoogle Scholar
  96. Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored approaches in drug development and diagnostics: from molecular design to biological model systems. Adv Healthc Mater. 2017;6:1–34.CrossRefGoogle Scholar
  97. Saifi MA, Khan W, Godugu C. Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharmaceut Nanotechnol. 2018;6:3–16.CrossRefGoogle Scholar
  98. Schulte PA, Kuempel ED, Drew NM. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials. Regul Toxicol Pharmacol. 2018;95:207–19.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Şen Karaman D, Manner S, Rosenholm JM. Mesoporous silica nanoparticles as diagnostic and therapeutic tools: how can they combat bacterial infection? Ther Deliv. 2018;9:241–4.PubMedCrossRefGoogle Scholar
  100. Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.PubMedCrossRefGoogle Scholar
  101. Shi X, Zhang C Y, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019:11(5):e1560.Google Scholar
  102. Siest G, Schallmeiner E. Pharmacogenomics and theranostics in practice: a summary of the Euromedlab-ESPT (The European Society of Pharmacogenomics and Theranostics) satellite symposium, May 2013. EJIFCC. 2014;24:85.PubMedCentralPubMedGoogle Scholar
  103. Silva AF, Borges A, Giaouris E, Graton Mikcha JM, Simões M. Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Crit Rev Microbiol. 2018;44:667–84.PubMedCrossRefGoogle Scholar
  104. Singh AV, Gemmate D, Kanase A, Pandey I, Misra V, Kishore V, Jahnke T, Bill J. Nanobiomaterials for vascular biology and wound management: a review. Veins Lymphat. 2018;7:7196.CrossRefGoogle Scholar
  105. Smeltzer MS, Zharov V, Galanzha E, Chen J, Meeker D, Beenken K. U.S. Patent Application No. 14/728,849. 2015.Google Scholar
  106. Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol. 2017;109:780–96.PubMedCrossRefGoogle Scholar
  107. Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N. Current and emerging techniques for antibiotic susceptibility tests. Theranostics. 2017;7:1795–805.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;5:863–81.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Taresco V, Francolini I, Padella F, Bellusci M, Boni A, Innocenti C, Martinelli A, D’Ilario L, Piozzi A. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles. Mater Sci Eng C. 2015;52:72–81.CrossRefGoogle Scholar
  110. Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: trials, tribulations and promise. Curr Opin Colloid Interface Sci. 2014;19:49–55.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tournier JN, Peyrefitte CN, Biot F, Merens A, Simon F. The threat of bioterrorism. Lancet Infect Dis. 2019;19:18–9.PubMedCrossRefGoogle Scholar
  112. Trandafilović LV, Whiffen RK, Dimitrijević-Branković S, Stoiljković M, Luyt AS, Djoković V. ZnO/Ag hybrid nanocubes in alginate biopolymer: synthesis and properties. Chem Eng J. 2014;253:341–9.CrossRefGoogle Scholar
  113. Trivedi U, Madsen JS, Rumbaugh KP, Wolcott RD, Burmølle M, Sørensen SJ. A post-planktonic era of in vitro infectious models: issues and changes addressed by a clinically relevant wound like media. Crit Rev Microbiol. 2017;43:453–65.PubMedCrossRefGoogle Scholar
  114. Vangara A, Pramanik A, Gao Y, Gates K, Begum S, Chandra Ray P. Fluorescence resonance energy transfer based highly efficient theranostic nanoplatform for two-photon bioimaging and two-photon excited photodynamic therapy of multiple drug resistance bacteria. ACS Appl Bio Mater. 2018;1:298–309.CrossRefGoogle Scholar
  115. Ventola CL. Pharmacogenomics in clinical practice: reality and expectations. Pharm Therapeut. 2011;36:412–50.Google Scholar
  116. Viana SM, Celes FS, Ramirez L, Kolli B, Ng DK, Chang KP, De Oliveira CI. Photodynamic vaccination of BALB/c mice for prophylaxis of cutaneous leishmaniasis caused by Leishmania amazonensis. Front Microbiol. 2018;9:165.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vicini P, Fields O, Lai E, Litwack ED, Martin AM, Morgan TM, Pacanowski MA, Papaluca M, Perez OD, Ringel MS, Robson M, Sakul H, Vockley J, Zaks T, Dolsten M, Søgaard M. Precision medicine in the age of big data: the present and future role of large-scale unbiased sequencing in drug discovery and development. Clin Pharmacol Therapeut. 2016;99:198–207.CrossRefGoogle Scholar
  118. Vikram Singh A, Sitti M. Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Curr Pharm Des. 2016;22:1418–28.CrossRefGoogle Scholar
  119. Vitiello G, Silvestri B, Luciani G. Learning from nature: bioinspired strategies towards antimicrobial nanostructured systems. Curr Top Med Chem. 2018;18:22–41.PubMedCrossRefGoogle Scholar
  120. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR. Photoantimicrobials—are we afraid of the light? Lancet Infect Dis. 2017;17:e49–55.PubMedCrossRefGoogle Scholar
  121. Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev. 2017;110:112–26.PubMedCrossRefGoogle Scholar
  122. Wang Y, Jin Y, Chen W, Wang J, Chen H, Sun L, Li X, Ji J, Yu Q, Shen L, Wang B. Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem Eng J. 2019;358:74–90.CrossRefGoogle Scholar
  123. Wiesner MR, Bottero JY. A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique. 2011;12:659–68.CrossRefGoogle Scholar
  124. Wolfmeier H, Pletzer D, Mansour SC, Hancock RE. New perspectives in biofilm eradication. ACS Infect Dis. 2017;4:93–106.PubMedCrossRefGoogle Scholar
  125. Wong OA, Hansen RJ, Ni TW, Heinecke CL, Compel WS, Gustafson DL, Ackerson CJ. Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model. Nanoscale. 2013;5:10525–33.PubMedCrossRefGoogle Scholar
  126. Wypych TP, Marsland BJ. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 2018;39:697–711.PubMedCrossRefGoogle Scholar
  127. Xie S, Manuguri S, Proietti G, Romson J, Fu Y, Inge AK, Wu B, Zhang Y, Häll D, Ramström O, Yan M. Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence. Proc Natl Acad Sci. 2017;114:8464–9.PubMedCrossRefGoogle Scholar
  128. Xu D, Wang Q, Yang T, Cao J, Lin Q, Yuan Z, Li L. Polyethyleneimine capped silver nanoclusters as efficient antibacterial agents. Int J Environ Res Public Health. 2016;13:334.PubMedCentralCrossRefPubMedGoogle Scholar
  129. Yan J, Chen L, Huang CC, Lung SC, Yang L, Wang WC, Lin PH, Suo G, Lin CH. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids Surf B: Biointerfaces. 2017;153:300–9.PubMedCrossRefGoogle Scholar
  130. Yan Y, Wang X, Lou P, Hu Z, Qu P, Li D, Li Q, Xu Y, Niu J, He Y, Zhong J, Huang Z. A nanoparticle-based HCV vaccine with enhanced potency. J Infect Dis. 2019;pii:jiz228Google Scholar
  131. Yang B, Chen Y, Shi J. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31:1802896.CrossRefGoogle Scholar
  132. Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnosis, and therapy. Acta Biomater. 2018;74:36–55.PubMedCrossRefGoogle Scholar
  133. Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34:7–25.PubMedCrossRefGoogle Scholar
  134. Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.CrossRefGoogle Scholar
  135. Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.PubMedCrossRefGoogle Scholar
  136. Zhang L, Wan S, Jiang Y, Wang Y, Fu T, Liu Q, Cao Z, Qiu L, Tan W. Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J Am Chem Soc. 2017;139:2532–40.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg AP. Nanoparticle vaccines. Vaccine. 2014;32:327–37.PubMedCrossRefGoogle Scholar
  138. Zheng K, Setyawati MI, Lim TP, Leong DT, Xie J. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10:7934–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan Bueno
    • 1
  1. 1.Research Center of Bioprospecting and Biotechnology for Biodiversity Foundation (BIOLABB)Armenia, QuindíoColombia

Personalised recommendations