Nanoparticles in Nanotheranostics Applications

  • Nadun H. Madanayake
  • Ryan Rienzie
  • Nadeesh M. AdassooriyaEmail author


Nanotheranostics, the amalgamation of diagnosis and therapeutic functions with nanotechnology, is a novel approach in personalized medicine. The advancement of nanotechnology offers a greater opportunity to engineer nanoparticles in theranostics applications and it has shown promising results especially in cancer therapy compared to conventional treatments. Since nanoparticles possess enhanced surface properties, they are capable of orienting nanotheranostic agents in specific sites of disease through which it significantly reduces the undesired side effects. In addition, the biocompatibility of those nanotheranostic agents with target cells or tissues provides a greater advantage to apply them in therapeutic functions as well as in imaging. Primarily metallic, magnetic, polymeric nanoparticles and quantum dots are used in nanotheranostics applications and gold-based nanomaterials and superparamagnetic iron oxide nanoparticles have attracted significant attention in recent years. Therefore, the aim of this chapter is to discuss the use of nanoparticles in theranostic applications while made them functionally important in nanotheranostics for personalized medicine.


Nanoparticles Nanotheranostics Personalized medicine Therapeutics Cancer treatments 



Computed tomography imaging


Deoxyribonucleic acid


Enhanced permeability and retention


Folic acid


gadolinium oxide–gold nanoclusters


Iron oxide nanoparticles


Magnetic nanoparticles


Magnetic resonance imaging


Near infrared




Photoacoustic imaging


Photodynamic therapy


Polyethylene glycol


Positron emission tomography






Photothermal therapy




Reactive oxygen species




Surface-enhanced Raman spectroscopy


  1. Agarwal A, Huang SW, O’donnell M, Day KC, Day M, Kotov N, Ashkenazi S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys. 2007;102(6):064701. Scholar
  2. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22–32.CrossRefGoogle Scholar
  3. Ashiq A, Adassooriya NM, Sarkar B, Rajapaksha AU, Ok YS, Vithanage M. Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. J Environ Manag. 2019;236:428–35.CrossRefGoogle Scholar
  4. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in diagnostics, therapy, and drug delivery. Arch Toxicol. 2014;88(7):1391–417.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv Mater. 2011;23(12):18–40.CrossRefGoogle Scholar
  6. Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted magnetic nanotheranostics of cancer. Molecules. 2017;22(6):975.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bhattacharya R, Patra CR, Earl A, Wang S, Katarya A, Lu L, Kizhakkedathu JN, Yaszemski MJ, Greipp PR, Mukhopadhyay D, Mukherjee P. Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine. 2007;3(3):224–38.CrossRefGoogle Scholar
  8. Bhushan B, Gopinath P. Tumor-targeted folate-decorated albumin-stabilised silver nanoparticles induce apoptosis at low concentration in human breast cancer cells. RSC Adv. 2015;5(105):86242–53.CrossRefGoogle Scholar
  9. Burgum, M.J., Evans, S.J., Jenkins, G.J., Doak, S.H. and Clift, M.J., (2018). Considerations for the human health implications of nanotheranostics. In Handbook of nanomaterials for cancer theranostics (pp. 279–303). Elsevier, Amsterdam.CrossRefGoogle Scholar
  10. Cabral RM, Baptista PV. Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles. Expert Rev Mol Diagn. 2014;14(8):1041–52.PubMedCrossRefGoogle Scholar
  11. Chang Y, Li X, Kong X, Li Y, Liu X, Zhang Y, Tu L, Xue B, Wu F, Cao D, Zhao H. A highly effective in vivo photothermal nanoplatform with dual imaging-guided therapy of cancer based on the charge reversal complex of dye and iron oxide. J Mater Chem B. 2015;3(42):8321–7.CrossRefGoogle Scholar
  12. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun. 2017;8:15432.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen Y, Vela J, Htoon H, Casson JL, Werder DJ, Bussian DA, Klimov VI, Hollingsworth JA. “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J Am Chem Soc. 2008;130(15):5026–7.PubMedCrossRefGoogle Scholar
  14. Chen JY, Lee YM, Zhao D, Mak NK, Wong RNS, Chan WH, Cheung NH. Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem Photobiol. 2010;86(2):431–7.PubMedCrossRefGoogle Scholar
  15. Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv Mater. 2017;29(6):1604894.CrossRefGoogle Scholar
  16. Cho H, Kwon GS. Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical imaging. ACS Nano. 2011;5(11):8721–9.PubMedCrossRefGoogle Scholar
  17. Choi JS, Park JC, Nah H, Woo S, Oh J, Kim KM, Cheon GJ, Chang Y, Yoo J, Cheon J. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem. 2008;47(33):6259–62.CrossRefGoogle Scholar
  18. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Choi K, Jeong SY. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880–9.PubMedCrossRefGoogle Scholar
  19. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40(1):44–56.PubMedCrossRefGoogle Scholar
  20. Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011;29(7):323–32.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Conde J, Bao C, Cui D, Baptista PV, Tian F. Antibody–drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release. 2014;183:87–93.PubMedCrossRefGoogle Scholar
  22. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007;18(5):1391–6.PubMedCrossRefGoogle Scholar
  23. Di Pietro P, Strano G, Zuccarello L, Satriano C. Gold and silver nanoparticles for applications in theranostics. Curr Top Med Chem. 2016;16(27):3069–102.PubMedCrossRefGoogle Scholar
  24. Dolci S, Ierardi V, Gradisek A, Jaglicic Z, Remskar M, Apih T, Cifelli M, Pampaloni G, Alberto Veracini C, Domenici V. Precursors of magnetic resonance imaging contrast agents based on cystine-coated iron-oxide nanoparticles. Curr Phys Chem. 2013;3(4):493–500.CrossRefGoogle Scholar
  25. Duncan TV. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci. 2011;363(1):1–24.PubMedCrossRefGoogle Scholar
  26. Estelrich J, Escribano E, Queralt J, Busquets M. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci. 2015;16(4):8070–101.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fang RH, Zhang L. Dispersion-based methods for the engineering and manufacture of polymeric nanoparticles for drug delivery applications. J Nanoeng Nanomanuf. 2011;1(1):106–12.CrossRefGoogle Scholar
  28. Fernández-López C, Mateo-Mateo C, Alvarez-Puebla RA, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir. 2009;25(24):13894–9.PubMedCrossRefGoogle Scholar
  29. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–31.PubMedCrossRefGoogle Scholar
  30. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.PubMedCrossRefGoogle Scholar
  31. Gao S, Zhang L, Wang G, Yang K, Chen M, Tian R, Ma Q, Zhu L. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials. 2016;79:36–45.PubMedCrossRefGoogle Scholar
  32. García MA. Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys. 2011;44(28):283001.CrossRefGoogle Scholar
  33. Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology. 2008;19(7):075104.PubMedCrossRefGoogle Scholar
  34. Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target. 2007;15(7–8):457–64.PubMedCrossRefGoogle Scholar
  35. Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine. 2017;12:6131–51.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guthi JS, Yang SG, Huang G, Li S, Khemtong C, Kessinger CW, Peyton M, Minna JD, Brown KC, Gao J. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 2009;7(1):32–40.CrossRefGoogle Scholar
  37. Han L, Xia JM, Hai X, Shu Y, Chen XW, Wang JH. Protein-stabilized gadolinium oxide-gold nanoclusters hybrid for multimodal imaging and drug delivery. ACS Appl Mater Interfaces. 2017;9(8):6941–9.PubMedCrossRefGoogle Scholar
  38. Hegmann T, Worden M, Miller DW. Aqueous synthesis of polyhedral “brick-like” iron oxide nanoparticles for hyperthermia and T2 MRI contrast enhancement, and for targeting endothelial cells for therapeutic delivery. 2016.
  39. Heo DN, Yang DH, Moon HJ, Lee JB, Bae MS, Lee SC, Lee WJ, Sun IC, Kwon IK. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials. 2012;33(3):856–66.PubMedCrossRefGoogle Scholar
  40. Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 2017;109:84–101.PubMedCrossRefGoogle Scholar
  41. Hoejgaard L, Hesse B. Hybrid imaging: conclusions and perspectives. Curr Med Imaging Rev. 2011;7(3):252–3.CrossRefGoogle Scholar
  42. Homan KA, Shah J, Gomez S, Gensler H, Karpiouk AB, Brannon-Peppas L, Emelianov SY. Silver nanosystems for photoacoustic imaging and image-guided therapy. J Biomed Opt. 2010;15(2):021316.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hu SH, Hsieh TY, Chiang CS, Chen PJ, Chen YY, Chiu TL, Chen SY. Surfactant-free, lipo-polymersomes stabilized by iron oxide nanoparticles/polymer interlayer for synergistically targeted and magnetically guided gene delivery. Adv Healthc Mater. 2014;3(2):273–82.PubMedCrossRefGoogle Scholar
  44. Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, Bao L, Zhang C, Wang K, Song H, Hu H. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011;32(13):3447–58.PubMedCrossRefGoogle Scholar
  45. Hwang S, Nam J, Jung S, Song J, Doh H, Kim S. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine. 2014;9(13):2003–22.PubMedCrossRefGoogle Scholar
  46. Iga AM, Robertson JH, Winslet MC, Seifalian AM. Clinical potential of quantum dots. BioMed Research International. 2008;2007.Google Scholar
  47. de Jesus PDCC, Pellosi DS, Tedesco AC. Magnetic nanoparticles: applications in biomedical processes as synergic drug-delivery systems. In: Materials for biomedical engineering. Amsterdam: Elsevier; 2019. p. 365–90.Google Scholar
  48. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–48.PubMedCrossRefGoogle Scholar
  49. Ji X, Peng F, Zhong Y, Su Y, He Y. Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf B Biointerfaces. 2014;124:132–9.PubMedCrossRefGoogle Scholar
  50. Jiang Z, Le ND, Gupta A, Rotello VM. Cell surface-based sensing with metallic nanoparticles. Chem Soc Rev. 2015;44(13):4264–74.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jing L, Ding K, Kershaw SV, Kempson IM, Rogach AL, Gao M. Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater. 2014;26(37):6367–86.PubMedCrossRefGoogle Scholar
  52. Jo SD, Ku SH, Won YY, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics. 2016;6(9):1362–77.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Joshi PN, Agawane S, Athalye MC, Jadhav V, Sarkar D, Prakash R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater Sci Eng C. 2017;78:1203–11.CrossRefGoogle Scholar
  54. Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials. 2017;136:98–114.PubMedCrossRefGoogle Scholar
  55. Khan S, Alam F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine. 2012;7:3245–57.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.PubMedCrossRefGoogle Scholar
  57. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–69.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kojima C, Cho SH, Higuchi E. Gold nanoparticle-loaded PEGylated dendrimers for theragnosis. Res Chem Intermediate. 2012;38(6):1279–89.CrossRefGoogle Scholar
  59. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci. 2011;101(1):73–8.Google Scholar
  60. Kottegoda N, Madusanka N, Sandaruwan C. Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: efficacy and plant uptake. Indian J Agr Sci. 2016;86:494–9.Google Scholar
  61. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10(2):299–320.PubMedCrossRefGoogle Scholar
  62. Li J, Cai P, Shalviri A, Henderson JT, He C, Foltz WD, Prasad P, Brodersen PM, Chen Y, DaCosta R, Rauth AM. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer. ACS Nano. 2014;8(10):9925–40.PubMedCrossRefGoogle Scholar
  63. Link S, Wang ZL, El-Sayed MA. How does a gold nanorod melt? J Phys Chem B. 2000;104(33):7867–70.CrossRefGoogle Scholar
  64. Lu PL, Chen YC, Ou TW, Chen HH, Tsai HC, Wen CJ, Lo CL, Wey SP, Lin KJ, Yen TC, Hsiue GH. Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials. 2011;32(8):2213–21.PubMedCrossRefGoogle Scholar
  65. Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-targeted nanotheranostics: recent advances and perspectives. Small. 2016;12(36):4936–54.PubMedCrossRefGoogle Scholar
  66. Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6(3):139–50.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Madusanka N, Sandaruwan C, Kottegoda N, Karunaratne V. Synthesis of Ag nanoparticle/Mg-Al-layered double hydroxide nanohybrids. Eur Int J Appl Sci Technol. 2014;1(1):1–7.Google Scholar
  68. Madusanka N, de Silva KN, Amaratunga G. A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media. Carbohydr Polym. 2015;134:695–9.PubMedCrossRefGoogle Scholar
  69. Madusanka N, Shivareddy SG, Hiralal P, Eddleston MD, Choi Y, Oliver RA, Amaratunga GA. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants. Nanotechnology. 2016;27(19):195402.PubMedCrossRefGoogle Scholar
  70. Madusanka N, Sandaruwan C, Kottegoda N, Sirisena D, Munaweera I, De Alwis A, Karunaratne V, Amaratunga GA. Urea–hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions. Appl Clay Sci. 2017a;150:303–8.CrossRefGoogle Scholar
  71. Madusanka N, Shivareddy SG, Eddleston MD, Hiralal P, Oliver RA, Amaratunga GA. Dielectric behaviour of montmorillonite/cyanoethylated cellulose nanocomposites. Carbohydr Polym. 2017b;172:315–21.PubMedCrossRefGoogle Scholar
  72. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 2009;9(8):2825–31.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mecke A, Majoros IJ, Patri AK, Baker JR, Banaszak Holl MM, Orr BG. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir. 2005;21(23):10348–54.PubMedCrossRefGoogle Scholar
  74. Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int J Nanomedicine. 2008;3(2):151–67.PubMedPubMedCentralGoogle Scholar
  75. Meir R, Shamalov K, Betzer O, Motiei M, Horovitz-Fried M, Yehuda R, Popovtzer A, Popovtzer R, Cohen CJ. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano. 2015;9(6):6363–72.PubMedCrossRefGoogle Scholar
  76. Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano. 2015;9(1):6–11.PubMedCrossRefGoogle Scholar
  77. Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64(13):1394–1416.PubMedCrossRefGoogle Scholar
  78. Na JH, Koo H, Lee S, Min KH, Park K, Yoo H, Lee SH, Park JH, Kwon IC, Jeong SY, Kim K. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials. 2011;32(22):5252–61.PubMedCrossRefGoogle Scholar
  79. Neuwelt A, Sidhu N, Hu CAA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol. 2015;204(3):302–13.CrossRefGoogle Scholar
  80. Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1–16.PubMedCrossRefGoogle Scholar
  81. Palmerston ML, Pan J, Torchilin V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1401.CrossRefGoogle Scholar
  82. Pan J, Liu Y, Feng SS. Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine. 2010;5(3):347–60.PubMedCrossRefGoogle Scholar
  83. Pang Z, Feng L, Hua R, Chen J, Gao H, Pan S, Jiang X, Zhang P. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol Pharm. 2010;7(6):1995–2005.PubMedCrossRefGoogle Scholar
  84. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88(24):11460–4.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.PubMedCrossRefGoogle Scholar
  86. Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33(4):1107–19.PubMedCrossRefGoogle Scholar
  87. Peng H, Tang J, Zheng R, Guo G, Dong A, Wang Y, Yang W. Nuclear-targeted multifunctional magnetic nanoparticles for photothermal therapy. Adv Healthc Mater. 2017;6(7):1601289.CrossRefGoogle Scholar
  88. Penon O, Marín MJ, Amabilino DB, Russell DA, Pérez-García L. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. J Colloid Interface Sci. 2016;462:154–65.PubMedCrossRefGoogle Scholar
  89. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001–18.PubMedPubMedCentralGoogle Scholar
  91. Ray S, Li Z, Hsu CH, Hwang LP, Lin YC, Chou PT, Lin YY. Dendrimer-and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics. 2018;8(22):6322–49.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818–78.PubMedCrossRefGoogle Scholar
  93. Rienzie R, Adassooriya NM. Toxicity of nanomaterials in agriculture and food. In: Nanomaterials: ecotoxicity, safety, and public perception. Cham: Springer; 2018. p. 207–34.CrossRefGoogle Scholar
  94. Rittner K, Benavente A, Bompard-Sorlet A, Heitz F, Divita G, Brasseur R, Jacobs E. New basic membrane-destabilizing peptides for plasmid-based gene delivery in-vitro and in-vivo. Mol Ther. 2002;5(2):104–14.PubMedCrossRefGoogle Scholar
  95. Sano K. Development of molecular probes based on iron oxide nanoparticles for in vivo magnetic resonance/photoacoustic dual imaging of target molecules in tumors. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan. 2017;137(1):55–60.Google Scholar
  96. Savla R, Taratula O, Garbuzenko O, Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release. 2011;153(1):16–22.PubMedCrossRefGoogle Scholar
  97. Scholl JA, Koh AL, Dionne JA. Quantum plasmon resonances of individual metallic nanoparticles. Nature. 2012;483(7390):421–7.PubMedCrossRefGoogle Scholar
  98. Schweitzer VG, Somers ML. PHOTOFRIN-mediated photodynamic therapy for treatment of early stage (Tis-T2N0M0) SqCCa of oral cavity and oropharynx. Lasers Surg Med. 2010;42(1):1–8.PubMedCrossRefGoogle Scholar
  99. Selvan ST, Narayanan K. Introduction to nanotheranostics. In: Introduction to nanotheranostics. Singapore: Springer; 2016. p. 1–6.CrossRefGoogle Scholar
  100. Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today. 2015;20(9):1143–51.PubMedCrossRefGoogle Scholar
  101. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shi D, Sadat ME, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale. 2015;7(18):8209–32.PubMedCrossRefGoogle Scholar
  103. Shubayev VI, Pisanic TR II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sonali MKV, Singh RP, Agrawal P, Mehata AK, Datta Maroti Pawde N, Sonkar R, Muthu MS. Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics. 2018;2(1):70–86.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Srinivas M, Aarntzen EHJG, Bulte JWM, Oyen WJ, Heerschap A, De Vries IJM, Figdor CG. Imaging of cellular therapies. Adv Drug Deliv Rev. 2010;62(11):1080–93.PubMedCrossRefGoogle Scholar
  106. Stevenson MJ, Heffern MC. Sounding out dysfunctional oxygen metabolism: a small-molecule probe for photoacoustic imaging of hypoxia. Biochemistry. 2018;57(6):893–4.PubMedCrossRefGoogle Scholar
  107. Strijkers GJ, Mulder M, Willem J, Van Tilborg F, Geralda A, Nicolay K. MRI contrast agents: current status and future perspectives. Anti Cancer Agents Med Chem. 2007;7(3):291–305.CrossRefGoogle Scholar
  108. Tan A, Yildirimer L, Rajadas J, De La Peña H, Pastorin G, Seifalian A. Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine. 2011;6(6):1101–14.PubMedCrossRefGoogle Scholar
  109. Templeton AC, Pietron JJ, Murray RW, Mulvaney P. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J Phys Chem B. 2000;104(3):564–70.CrossRefGoogle Scholar
  110. Thorat ND, Lemine OM, Bohara RA, Omri K, El Mir L, Tofail SA. Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys. 2016;18(31):21331–9.PubMedCrossRefGoogle Scholar
  111. Usov OA, Sidorov AI, Nashchekin AV, Podsvirov OA, Kurbatova NV, Tsekhomsky VA, Vostokov AV. SPR of Ag nanoparticles in photothermochromic glasses. In Plasmonics: metallic nanostructures and their optical properties VII 7394: 73942J, International Society for Optics and Photonics. 2009Google Scholar
  112. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.PubMedCrossRefGoogle Scholar
  113. Wang LS, Chuang MC, Ho JAA. Nanotheranostics—a review of recent publications. Int J Nanomedicine. 2012;7:4679–95.PubMedPubMedCentralGoogle Scholar
  114. Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf A Physicochem Eng Asp. 2014;122:638–44.Google Scholar
  115. Wang J, Tao W, Chen X, Farokhzad OC, Liu G. Emerging advances in nanotheranostics with intelligent bioresponsive systems. Theranostics. 2017;7(16):3915–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wei P, Chen J, Hu Y, Li X, Wang H, Shen M, Shi X. Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors. Adv Healthc Mater. 2016;5(24):3203–13.PubMedCrossRefGoogle Scholar
  117. Wu W, Zhou T, Berliner A, Banerjee P, Zhou S. Smart core–shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem Mater. 2010;22(6):1966–76.CrossRefGoogle Scholar
  118. Wu Y, Gao D, Zhang P, Li C, Wan Q, Chen C, Gong P, Gao G, Sheng Z, Cai L. Iron oxide nanoparticles protected by NIR-active multidentate-polymers as multifunctional nanoprobes for NIRF/PA/MR trimodal imaging. Nanoscale. 2016;8(2):775–9.PubMedCrossRefGoogle Scholar
  119. Xi L, Grobmyer SR, Zhou G, Qian W, Yang L, Jiang H. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents. J Biophotonics. 2014;7(6):401–9.PubMedCrossRefGoogle Scholar
  120. Xie J, Liu G, Eden HS, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res. 2011;44(10):883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xu X, Chong Y, Liu X, Fu H, Yu C, Huang J, Zhang Z. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomater. 2019;84:328–38.PubMedCrossRefGoogle Scholar
  122. Yang HM, Oh BC, Kim JH, Ahn T, Nam HS, Park CW, Kim JD. Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf A Physicochem Eng Asp. 2011;391(1-3):208–15.CrossRefGoogle Scholar
  123. Yang Z, Song J, Tang W, Fan W, Dai Y, Shen Z, Lin L, Cheng S, Liu Y, Niu G, Rong P. Stimuli-responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging. Theranostics. 2019;9(2):526.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yong Y, Cheng X, Bao T, Zu M, Yan L, Yin W, Ge C, Wang D, Gu Z, Zhao Y. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano. 2015;9(12):12451–63.PubMedCrossRefGoogle Scholar
  125. Yu J, Yin W, Zheng X, Tian G, Zhang X, Bao T, Dong X, Wang Z, Gu Z, Ma X, Zhao Y. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics. 2015;5(9):931–45.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhang Z, Jia J, Lai Y, Ma Y, Weng J, Sun L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorganic Med Chem. 2010;18(15):5528–34.CrossRefGoogle Scholar
  127. Zhang Z, Wang S, Xu H, Wang B and Yao C. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. J Biomed Opt. 2015;20(5):051043.CrossRefGoogle Scholar
  128. Zhang P, Hu C, Ran W, Meng J, Yin Q, Li Y. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics. 2016a;6(7):948–68.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016b;17(9):E1534.PubMedCrossRefGoogle Scholar
  130. Zhang S, Zheng Y, Fu DY, Li W, Wu Y, Li B, Wu L. Biocompatible supramolecular dendrimers bearing a gadolinium-substituted polyanionic core for MRI contrast agents. J Mater Chem B. 2017;5(22):4035–43.CrossRefGoogle Scholar
  131. Zhu J, Wang G, Alves CS, Tomás H, Xiong Z, Shen M, Rodrigues J, Shi X. Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for pH-responsive drug delivery and targeted computed tomography imaging. Langmuir. 2018;34(41):12428–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nadun H. Madanayake
    • 1
  • Ryan Rienzie
    • 2
  • Nadeesh M. Adassooriya
    • 3
    Email author
  1. 1.Department of BotanyUniversity of Sri JayewardenepuraNugegodaSri Lanka
  2. 2.Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of Food Science & TechnologyWayamba University of Sri LankaMakanduraSri Lanka

Personalised recommendations