Advertisement

Emerging Role of Aminolevulinic Acid and Gold Nanoparticles Combination in Theranostic Applications

  • Lilia Coronato Courrol
  • Karina de Oliveira Gonçalves
  • Daniel Perez Vieira
Chapter

Abstract

Major advancements in theranostic agents for cancer and inflammatory processes, such as atherosclerosis, have been reported in recent years. The theranostic agents can be used for both diagnosis and treatment. In this chapter, we show that cancer and atheroma plaques exhibit accumulation of protoporphyrin IX (PpIX), which is transferred to the blood and feces. PpIX may therefore be a biomarker for atherosclerosis and cancer, enabling minimally invasive and inexpensive diagnosis. PpIX is the immediate precursor in the heme biosynthesis. Tumor cells tend to retain more PpIX owing to cellular energy metabolism. Analysis of these spectroscopic properties of PpIX enables monitoring of its concentrations in tissues and biological fluids. Additionally, increases in PpIX fluorescence are proportional to tumor progression; thus, this tool can be used to detect and stage tumors. Exogenous administration of aminolevulinic acid (ALA) enhances endogenous PpIX production and allows its use in photodynamic diagnosis and as a photosensitizer/sonosensitizer for photodynamic/sonodynamic therapies. However, ALA cannot easily penetrate target cells. Accordingly, we propose the use of gold nanoparticles produced with ALA or its methyl ester to solve this problem.

Keywords

Fluorescence Porphyrin Gold nanoparticle Atherosclerosis Prostate cancer 

References

  1. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473:347–64.  https://doi.org/10.1042/BJ20150942.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy. Photochem Photobiol. 2001;74:656–69.CrossRefGoogle Scholar
  3. Arakawa K, Isoda K, Ito T, Nakajima K, Shibuya T, Ohsuzu F. Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap. Arterioscl Thromb Vasc Biol. 2002;22:1002–7.CrossRefGoogle Scholar
  4. Bailly AL, Correard F, Popov A, Tselikov G, Chaspoul F, Appay R, Al-Kattan A, Kabashin AV, Braguer D, Esteve MA. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Scientific Reports 2019;9.Google Scholar
  5. Benito M, Martin V, Blanco MD, Teijon JM, Gomez C. Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer. J Pharm Sci. 2013;102:2760–9.  https://doi.org/10.1002/jps.23621.CrossRefPubMedGoogle Scholar
  6. Boens N, Qin W, Basaric N, Hofkens J, Ameloot M, Pouget J, Lefevre J-P, Valeur B, Gratton E, vandeVen M, Silva ND Jr, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem. 2007;79:2137–49.  https://doi.org/10.1021/ac062160k.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chakrabarti P, Orihuela E, Egger N, Neal DE, Gangula R, Adesokun A, Motamedi M. Delta-aminolevulinic acid-mediated photosensitization of prostate cell lines: implication for photodynamic therapy of prostate cancer. Prostate. 1998;36:211–8.CrossRefGoogle Scholar
  8. Chen HJ, Zhou XB, Gao Y, Zheng BY, Tang FX, Huang JD. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today. 2014;19:502–9.  https://doi.org/10.1016/j.drudis.2014.01.010.CrossRefPubMedGoogle Scholar
  9. Costley D, Mc Ewan C, Fowley C, McHale AP, Atchison J, Nomikou N, Callan JF. Treating cancer with sonodynamic therapy: a review. Int J Hyperth. 2015;31:107–17.  https://doi.org/10.3109/02656736.2014.992484.CrossRefGoogle Scholar
  10. Courrol LC, de Oliveira Silva FR, Bellini MH, Mansano RD, Schor N, Vieira Junior ND, Kessel D. Blood porphyrin luminescence and tumor growth correlation - art. no. 64270Y. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XVI, 2007a. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) Volume: 6427 Páginas:Y4270–Y4270.Google Scholar
  11. Courrol LC, de Oliveira Silva FR, Coutinho EL, Piccoli MF, Mansano RD, Vieira Junior ND, Schor N, Bellini MH. Study of blood porphyrin spectral profile for diagnosis of tumor progression. J Fluoresc. 2007b;17:289–92.  https://doi.org/10.1007/s10895-007-0171-7.CrossRefPubMedGoogle Scholar
  12. Daniell MD, Hill JS. A history of photodynamic therapy. Aust N Z J Surg. 1991;61:340–8.CrossRefGoogle Scholar
  13. de Oliveira Silva FR, Bellini MH, Nabeshima CT, Schor N, Vieira ND Jr, Courrol LC. Enhancement of blood porphyrin emission intensity with aminolevulinic acid administration: a new concept for photodynamic diagnosis of early prostate cancer. Photodiagn Photodyn Ther. 2011;8:7–13.  https://doi.org/10.1016/j.pdpdt.2010.12.006.CrossRefGoogle Scholar
  14. Donnelly RF, McCarron PA, Woolfson AD. Drug delivery of aminolevulinic acid from topical formulations intended for photodynamic therapy. Photochem Photobiol. 2005;81:750–67.  https://doi.org/10.1562/2004-08-23-IR-283.CrossRefPubMedGoogle Scholar
  15. Dougherty TJ. PHOTOSENSITIZERS - THERAPY AND DETECTION OF MALIGNANT-TUMORS. Photochemistry and Photobiology 1987;45:879–89.CrossRefGoogle Scholar
  16. Feuerstein T, Berkovitch-Luria G, Nudelman A, Rephaeli A, Malik Z. Modulating ALA-PDT efficacy of mutlidrug resistant MCF-7 breast cancer cells using ALA prodrug. Photochem Photobiol Sci. 2011;10:1926–33.  https://doi.org/10.1039/c1pp05205e.CrossRefPubMedGoogle Scholar
  17. Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH. Advances in ultrasound biomicroscopy. Ultrasound Med Biol. 2000;26:1–27.CrossRefGoogle Scholar
  18. Fukuda H, Casas A, Batlle A. Use of ALA and ALA derivatives for optimizing ALA-based photodynamic therapy: a review of our experience. J Environ Pathol Toxicol Oncol. 2006;25:127–43.CrossRefGoogle Scholar
  19. Georges JF, Valeri A, Wang H, Brooking A, Kakareka M, Cho SS, Al-Atrache Z, Bamimore M, Osman H, Mach J, Yu S, Li C, Appelt D, Lee JYK, Nakaji P, Brill K, Yocom S. Delta-Aminolevulinic Acid-Mediated Photodiagnoses in Surgical Oncology: A Historical Review of Clinical Trials. Frontiers in Surgery 2019;6.Google Scholar
  20. Ghadially FN, Neish WJP. Porphyrin fluorescence of experimentally produced squamous cell carcinoma. Nature. 1960;188:1124.CrossRefGoogle Scholar
  21. Gibbs SL, Chen B, O’Hara JA, Hoopes PJ, Hasan T, Pogue BW. Protoporphyrin IX level correlates with number of mitochondria, but increase in production correlates with tumor cell size. Photochem Photobiol. 2006;82:1334–41.  https://doi.org/10.1562/2006-03-11-RA-843.CrossRefPubMedGoogle Scholar
  22. Goncalves KD, Cordeiro TD, Silva FRD, Samad RE, Vieira ND, Courrol LC. In: Kurachi C, et al., editors. Biophotonics South America. Bellingham, WA: SPIE Press; 2015.Google Scholar
  23. Goncalves KD, Vieira DP, Courrol LC. Study of THP-1 macrophage viability after sonodynamic therapy using methyl ester of 5-aminolevulinic acid gold nanoparticles. Ultrasound Med Biol. 2018;44:2009–17.  https://doi.org/10.1016/j.ultrasmedbio.2018.05.012.CrossRefGoogle Scholar
  24. Gotardelo DR, Courrol LC, Bellini MH, Silva FRD, Soares CRJ. Porphyrins are increased in the faeces of patients with prostate cancer: a case-control study. BMC Cancer. 2018;18:1090.  https://doi.org/10.1186/s12885-018-5030-1.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hasanzadeh M, Shadjou N, de la Guardia M. Early stage screening of breast cancer using electrochemical biomarker detection. TrAC Trends Anal Chem. 2017;91:67–76.  https://doi.org/10.1016/j.trac.2017.04.006.CrossRefGoogle Scholar
  26. Hecht F, Cazarin JM, Lima CE, Faria CC, Leitao AAD, Ferreira ACF, Carvalho DP, Fortunato RS. Redox homeostasis of breast cancer lineages contributes to differential cell death response to exogenous hydrogen peroxide. Life Sciences 2016;158:7–13.CrossRefGoogle Scholar
  27. Hou W, Cronin SB. A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater. 2013;23:1612–9.  https://doi.org/10.1002/adfm.201202148.CrossRefGoogle Scholar
  28. Huang Z, Hsu Y-C, Li L-B, Wang L-W, Song X-D, Yow CMN, Lei X, Musani AI, Luo R-C, Day BJ. Photodynamic therapy of cancer—challenges of multidrug resistance. J Innov Opt Health Sci. 2015;8:1530002.  https://doi.org/10.1142/S1793545815300025.CrossRefGoogle Scholar
  29. Jiang LQ, Wang TY, Webster TJ, Duan HJ, Qiu JY, Zhao ZM, Yin XX, Zheng CL. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport. International Journal of Nanomedicine 2017;12:6383–98.CrossRefGoogle Scholar
  30. Ju DH, Yamaguchi F, Zhan GZ, Higuchi T, Asakura T, Morita A, Orimo H, Hu SS. Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma. Tumor Biol. 2016;37:10415–26.  https://doi.org/10.1007/s13277-016-4931-3.CrossRefGoogle Scholar
  31. Karina OG, Monica NS, Leticia BS, Lilia CC. Green synthesis of gold nanoparticles with aminolevulinic acid of: a novel theranostic agent for atherosclerosis. BBA Clin. 2015;3:S13.  https://doi.org/10.1016/j.bbacli.2015.05.038.CrossRefGoogle Scholar
  32. Kennedy JC, Pottier RH. ENDOGENOUS PROTOPORPHYRIN-IX, A CLINICALLY USEFUL PHOTOSENSITIZER FOR PHOTODYNAMIC THERAPY. Journal of Photochemistry and Photobiology B-Biology 1992; 14:275–92.Google Scholar
  33. Korbelik M, Dougherty GJ. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 1999;59:1941–6.PubMedGoogle Scholar
  34. Labbe RF, Vreman HJ, Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin Chem. 1999;45:2060–72.PubMedGoogle Scholar
  35. Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 2000;7:2023–7.  https://doi.org/10.1038/sj.gt.3301339.CrossRefPubMedGoogle Scholar
  36. Li ZT, Sun X, Guo SY, Wang LP, Wang TY, Peng CH, Wang W, Tian Z, Zhao RB, Cao WW, Tian Y. Rapid stabilisation of atherosclerotic plaque with 5-aminolevulinic acid-mediated sonodynamic therapy. Thrombosis and Haemostasis 2015;114:793–803.CrossRefGoogle Scholar
  37. Li Y, Zhao JW, You WL, Cheng DH, Ni WH. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance. Nanoscale 2017;9:3925–33.CrossRefGoogle Scholar
  38. Linden F, Domschke G, Erbel C, Akhavanpoor M, Katus HA, Gleissner CA. Inflammatory therapeutic targets in coronary atherosclerosis—from molecular biology to clinical application. Front Physiol. 2014;5:455.CrossRefGoogle Scholar
  39. Lippert BM, Grosse U, Klein M, Kuelkens C, Klahr N, Brossmann P, Teymoortash A, Ney M, Doss MO, Werner JA. Excretion measurement of porphyrins and their precursors after topical administration of 5-aminolaevulinic acid for fluorescence endoscopy in head and neck cancer. Res Commun Mol Pathol Pharmacol. 2003;113:75–85.PubMedGoogle Scholar
  40. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol. 1960;82:508–16.CrossRefGoogle Scholar
  41. Masilamani V, Al-Zhrani K, Al-Salhi M, Al-Diab A, Al-Ageily M. Cancer diagnosis by autofluorescence of blood components. J Lumin. 2004;109:143–54.  https://doi.org/10.1016/j.jlumin.2004.02.001.CrossRefGoogle Scholar
  42. Mateus JE, Valdivieso W, Hernandez IP, Martinez F, Paez E, Escobar P. Cell accumulation and antileishmanial effect of exogenous and endogenous protoporphyrin IX after photodynamic treatment. Biomedica. 2014;34:589–97.  https://doi.org/10.1590/S0120-41572014000400012.CrossRefPubMedGoogle Scholar
  43. McEwan C, Nesbitt H, Nicholas D, Kavanagh ON, McKenna K, Loan P, Jack IG, McHale AP, Callan JF. Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer. Bioorg Med Chem. 2016;24:3023–8.  https://doi.org/10.1016/j.bmc.2016.05.015.CrossRefPubMedGoogle Scholar
  44. McHale AP, Callan JF, Nomikou N, Fowley C, Callan B. Sonodynamic therapy: concept, mechanism and application to cancer treatment therapeutic. Ultrasound. 2016;880:429–50.  https://doi.org/10.1007/978-3-319-22536-4_22.CrossRefGoogle Scholar
  45. Mehrad H, Farhoudi M. Investigation of protoporphyrin IX-mediated sonodynamic therapy on intermediate stage atherosclerosis using a new computerized B-mode ultrasound analyzing method. Atherosclerosis. 2016;252:E192.CrossRefGoogle Scholar
  46. Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagn Photodyn Ther. 2013;10:382–8.  https://doi.org/10.1016/j.pdpdt.2013.03.010.CrossRefGoogle Scholar
  47. Mohammadi Z, Sazgarnia A, Rajabi O, Toosi MS. Comparative study of X-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line. Artif Cells Nanomed Biotechnol. 2017;45:467–73.  https://doi.org/10.3109/21691401.2016.1167697.CrossRefPubMedGoogle Scholar
  48. Namikawa T, Yatabe T, Inoue K, Shuin T, Hanazaki K. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol. 2015;21:8769–75.  https://doi.org/10.3748/wjg.v21.i29.8769.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nascimento da Silva M, Sicchieri LB, Rodrigues de Oliveira Silva F, Andrade MF, Courrol LC. Liquid biopsy of atherosclerosis using protoporphyrin IX as a biomarker. Analyst. 2014;139:1383–8.  https://doi.org/10.1039/c3an01945d.CrossRefPubMedGoogle Scholar
  50. Navarro JRG, Lerouge F. From gold nanoparticles to luminescent nano-objects: experimental aspects for better gold-chromophore interactions. Nanophotonics. 2017;6:71–92.  https://doi.org/10.1515/nanoph-2015-0143.CrossRefGoogle Scholar
  51. Oo MKK, Yang X, Wang H, Du H. 5-Aminolevulinic acid conjugated gold nanoparticles for cancer treatment. Nanomedicine (Lond). 2008;3:777–86.  https://doi.org/10.2217/17435889.3.6.777.CrossRefGoogle Scholar
  52. Padera TP, Meijer EFJ, Munn LL. The lymphatic system in disease processes and cancer progression. Annu Rev Biomed Eng. 2016;18:125–58.  https://doi.org/10.1146/annurev-bioeng-112315-031200.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peng Q, Warloe T, Moan J, Godal A, Apricena F, Giercksky KE, Nesland JM. Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts. Cancer Res. 2001;61:5824–32.PubMedGoogle Scholar
  54. Peng CH, Li YS, Liang HJ, Cheng JL, Li QS, Sun X, Li ZT, Wang FP, Guo YY, Tian Z, Yang LM, Tian Y, Zhang ZG, Cao WW. Detection and photodynamic therapy of inflamed atherosclerotic plaques in the carotid artery of rabbits. J Photochem Photobiol B Biol. 2011;102:26–31.  https://doi.org/10.1016/j.jphotobiol.2010.09.001.CrossRefGoogle Scholar
  55. Risaliti L, Piazzini V, Di Marzo MG, Brunetti L, Cecchi R, Lencioni P, Bilia AR, Bergonzi MC. Topical formulations of delta-aminolevulinic acid for the treatment of actinic keratosis: characterization and efficacy evaluation. Eur J Pharm Sci. 2018;115:345–51.  https://doi.org/10.1016/j.ejps.2018.01.045.CrossRefPubMedGoogle Scholar
  56. Rock KL, Kono H. The inflammatory response to cell death. Annual Review of Pathology-Mechanisms of Disease 2008;3:99–126.CrossRefGoogle Scholar
  57. Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11:349–63.  https://doi.org/10.1016/j.ultsonch.2004.03.004.CrossRefPubMedGoogle Scholar
  58. Ross R. Mechanisms of disease—atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.CrossRefGoogle Scholar
  59. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS. Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci. 2001;947:271–93.CrossRefGoogle Scholar
  60. Sachar M, Anderson KE, Ma XC. Protoporphyrin IX: the Good, the Bad, and the Ugly. J Pharmacol Exp Ther. 2016;356:267–75.  https://doi.org/10.1124/jpet.115.228130.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Smolsky J, Kaur S, Hayashi C, Batra SK, Krasnoslobodtsev AV. Surface-enhanced raman scattering-based immunoassay technologies for detection of disease biomarkers. Biosensors (Basel). 2017;7:7.  https://doi.org/10.3390/bios7010007.CrossRefGoogle Scholar
  62. Sum G, Hone T, Atun R, Millett C, Suhrcke M, Mahal A, Koh GCH, Lee JT. Multimorbidity and out-of-pocket expenditure on medicines: a systematic review. BMJ Glob Health. 2018;3:e000505.  https://doi.org/10.1136/bmjgh-2017-000505.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sun SJ, Xu YX, Fu P, Chen M, Sun SH, Zhao RR, Wang JR, Liang XL, Wang SM. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1 alpha-siRNA. Nanoscale. 2018;10:19945–56.  https://doi.org/10.1039/c8nr03074j.CrossRefPubMedGoogle Scholar
  64. Sunar U, Rohrbach DJ, Morgan J, Zeitouni N, Henderson BW. Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging. Biomed Opt Express. 2013;4:531–7.  https://doi.org/10.1364/BOE.4.000531.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Taketani S, Ishigaki M, Mizutani A, Uebayashi M, Numata M, Ohgari Y, Kitajima S. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins. Biochemistry. 2007;46:15054–61.  https://doi.org/10.1021/bi701460x.CrossRefPubMedGoogle Scholar
  66. Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and cancer; a resemblance with far-reaching implications. Arch Med Res. 2017;48:12–26.  https://doi.org/10.1016/j.arcmed.2017.03.005.CrossRefPubMedGoogle Scholar
  67. Thunshelle C, Yin R, Chen QQ, Hamblin MR. Current advances in 5-aminolevulinic acid mediated photodynamic therapy. Curr Dermatol Rep. 2016;5:179–90.  https://doi.org/10.1007/s13671-016-0154-5.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Trendowski M. The promise of sonodynamic therapy. Cancer Metastasis Rev. 2014;33:143–60.  https://doi.org/10.1007/s10555-013-9461-5.CrossRefPubMedGoogle Scholar
  69. Umemura S, Kawabata K, Sasaki K, Yumita N, Umemura K, Nishigaki R. Recent advances in sonodynamic approach to cancer therapy. Ultrason Sonochem. 1996;3:S187–91.  https://doi.org/10.20892/j.issn.2095-3941.2016.0068.CrossRefGoogle Scholar
  70. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 2006;160:1–40.CrossRefGoogle Scholar
  71. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. Journal of the American College of Cardiology 2006;47:C13–C18CrossRefGoogle Scholar
  72. Vio V, Marchant MJ, Araya E, Kogan MJ. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Curr Pharm Des. 2017;23:1916–26.  https://doi.org/10.2174/1381612823666170105152948.CrossRefPubMedGoogle Scholar
  73. Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wanczyk M, Bojarczuk K, Golab J. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules. 2011;16:4140–64.  https://doi.org/10.3390/molecules16054140.CrossRefPubMedCentralGoogle Scholar
  74. Wakui M, Yokoyama Y, Wang H, Shigeto T, Futagami M, Mizunuma H. Efficacy of a methyl ester of 5-aminolevulinic acid in photodynamic therapy for ovarian cancers. J Cancer Res Clin Oncol. 2010;136:1143–50.  https://doi.org/10.1007/s00432-010-0761-7.CrossRefPubMedGoogle Scholar
  75. Wang Y, Wang W, Xu HB, Sun Y, Sun J, Jiang YX, Yao JT, Tian Y. Non-lethal sonodynamic therapy inhibits atherosclerotic plaque progression in ApoE(−/−) mice and attenuates ox-LDL-mediated macrophage impairment by inducing heme oxygenase-1. Cell Physiol Biochem. 2017;41:2432–46.  https://doi.org/10.1159/000475913.CrossRefPubMedGoogle Scholar
  76. Welcker ML. The porphyrins. N Engl J Med. 1945;232:11–9.CrossRefGoogle Scholar
  77. Wood AKW, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 2015;41:905–28.  https://doi.org/10.1016/j.ultrasmedbio.2014.11.019.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wozniak A, Malankowska A, Nowaczyk G, Grzeskowiak BF, Tusnio K, Slomski R, Zaleska-Medynska A, Jurga S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med. 2017;28:11.  https://doi.org/10.1007/s10856-017-5902-y.CrossRefGoogle Scholar
  79. Wu JN, Han HJ, Jin Q, Li ZH, Li H, Ji J. Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9:14596–605.  https://doi.org/10.1021/acsami.6b15853.CrossRefPubMedGoogle Scholar
  80. Xu XR, Meng JW, Hou SG, Ma HP, Wang DS. The characteristic fluorescence of the serum of cancer-patients. J Lumin. 1988;40–41:219–20.  https://doi.org/10.1016/0022-2313(88)90163-9.CrossRefGoogle Scholar
  81. Xu H, Yao CP, Wang J, Chang ZN, Zhang ZX. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser. Laser Phys Lett. 2016;13:025602.CrossRefGoogle Scholar
  82. Yumita N, Nishigaki R, Umemura K, Umemura S. HEMATOPORPHYRIN AS A SENSITIZER OF CELL-DAMAGING EFFECT OF ULTRASOUND. Japanese Journal of Cancer Research 1989;80:219–22.CrossRefGoogle Scholar
  83. Yumita N, Iwase Y, Nishi K, Komatsu H, Takeda K, Onodera K, Fukai T, Ikeda T, Umemura S, Okudaira K, Momose Y. Involvement of reactive oxygen species in sonodynamically induced apoptosis using a novel porphyrin derivative. Theranostics. 2012;2:880–8.  https://doi.org/10.7150/thno.3899.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zaak D, Sroka R, Stocker S, Bise K, Lein M, Hoppner M, Frimberger D, Schneede P, Reich O, Kriegmair M, Knuchel R, Baumgartner R, Hofstetter A. Photodynamic therapy of prostate cancer by means of 5-aminolevulinic acid-induced protoporphyrin IX—in vivo experiments on the dunning rat tumor model. Urol Int. 2004;72:196–202.  https://doi.org/10.1159/000077114.CrossRefPubMedGoogle Scholar
  85. Zhang ZX, Wang SJ, Xu H, Wang B, Yao CP. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. J Biomed Opt. 2015;20:51043.  https://doi.org/10.1117/1.JBO.20.5.051043.CrossRefPubMedGoogle Scholar
  86. Zheng SY, Li XL, Zhang YB, Xie Q, Wong YS, Zheng WJ, Chen TF. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomedicine. 2012;7:3939–49.  https://doi.org/10.2147/IJN.S30940.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhu B, Liu QH, Wang YA, Wang XB, Wang P, Zhang LN, Su S. Comparison of accumulation, subcellular location, and sonodynamic cytotoxicity between hematoporphyrin and protoporphyrin IX in L1210 cells. Chemotherapy. 2010;56:403–10.  https://doi.org/10.1159/000317743.CrossRefPubMedGoogle Scholar
  88. Zhu ZX, Scalfi-Happ C, Ryabova A, Grafe S, Wiehe A, Peter RU, Loschenov V, Steiner R, Wittig R. Photodynamic activity of Temoporfin nanoparticles induces a shift to the M1-like phenotype in M2-polarized macrophages. J Photochem Photobiol B Biol. 2018;185:215–22.  https://doi.org/10.1016/j.jphotobiol.2018.06.015.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lilia Coronato Courrol
    • 1
  • Karina de Oliveira Gonçalves
    • 1
  • Daniel Perez Vieira
    • 2
  1. 1.Laboratory of Applied Biomedical Optics, Physics DepartmentFederal University of São PauloDiademaBrazil
  2. 2.Radiobiology LaboratoryNuclear and Research Institute, IPEN/CNEN-SPSão PauloBrazil

Personalised recommendations