Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors

  • Costica CaizerEmail author


Superparamagnetic hyperthermia (SPMHT) is noninvasive, nontoxic, and with increased efficiency in destroying malignant tumors compared with magnetic hyperthermia (MHT), and conventional chemo- and radiotherapy (RT) currently used in medical clinics in this issue. Nowadays SPMHT appears as the most promising alternative method in future therapy of cancer. In this chapter, SPMHT/MHT with bioencapsulated/biofunctionalized ferrimagnetic nanoparticles, best suited for this therapy, and the recent significant results obtained in vitro and in vivo on different animal models and for different types of cancers with high incidence among the people, with the greatest potential for application in clinical trials, will be presented. Moreover, the new concept of nanotheranostic as a result of advanced nanobiotechnology for increasing the efficiency in cancer therapy to 100% and nontoxicity on the heath tissues also will be presented.


Superparamagnetic hyperthermia Nanotheranostic In vitro In vivo Cancer therapy 





5-Fluorouracil (anticancer drug)


Drug-resistive cancer cells


Alternating magnetic field


Aminoterephthalic acid


Biocompatible ferrimagnetic nanoparticles


Biocompatible magnetic nanoparticles


Biocompatible superparamagnetic nanoparticles




Carboxymethyl cellulose


Computed tomography


Cyanine7 (lipophilic fluorescent dye)


Doxorubicin (anticancer drug)




Ferrimagnetic nanoparticles


Ferromagnetic iron-manganese oxide


Fluorescent nanoparticles for imaging


Fluorescence molecular imaging






Hydroxyl-propyl methyl cellulose


Iron oxide nanoparticles






Thermo-sensitive magnetoliposomes


Magnetic cationic liposomes


Magnetic fluid hyperthermia


Magnetic hydroxyapatite


Magnetic hyperthermia


Micellar magnetic nanoclusters


Magnetic nanoparticles


Magnetic resonance imaging


Magnetic tactic bacteria


MTT assay








Nano-magnetic hyperthermia




Nano-photothermal therapy


Oleic acid


Photoacoustic imaging


Phosphate buffer solution


Photodynamic therapy


Polyethylene glycol




Positron emission tomography


Polymeric micelle


Prostate-specific antigen


Polyvinyl alcohol


Reactive oxygen specie




Specific absorption rate


Surface-enhanced Raman scattering


Single-photon emission computed tomography


Superparamagnetic iron oxide nanoparticles


Superparamagnetic relaxation


Superparamagnetic hyperthermia


Superparamagnetic nanoparticles


Terephthalic acid




  1. Almaki JH, Nasiri R, Idris A, Majid FAA, Salouti M, Wong TS, Dabagh S, Marvibaigi M, Amini N. Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells. Nanotechnology. 2016;27:105601, 13pp.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alphandéry E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA. Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C. 2011a;115:18–22.CrossRefGoogle Scholar
  3. Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB 1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011b;5:6279–96.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alphandéry E, Guyot F, Chebbi I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm. 2012;434:444–52.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alphandéry E, Chebbi I, Guyot F, Durand-Dubief M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int J Hyperthermia. 2013;29:801–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Baker I, Zeng Q, Li W, Sullivan CR. Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys. 2006;99:08H106–08H106-3.CrossRefGoogle Scholar
  7. Caizer C. Magnetic anisotropy of CoδFe3-δO4 nanoparticles for applications in magnetic hyperthermia. In: The 19th international conference on magnetism (ICM 2012), 8–13 Jul, Busan, Korea, 2012.Google Scholar
  8. Caizer C. SPMHT with biocompatible SPIONs for destroy the cancer cells. In: The 8th international conference on fine particle magnetism (ICFPM-2013), 24–27 Jun, Perpignan, France, 2013.Google Scholar
  9. Caizer C. Computational study on superparamagnetic hyperthermia with biocompatible SPIONs to destroy the cancer cells. J Phys Conf Ser. 2014;521:012015–4.CrossRefGoogle Scholar
  10. Caizer C. Magnetic hyperthermia using magnetic metal/oxide nanoparticles with potential in cancer therapy, Ch. 10. In: Rai M, Shegokar R, editors. Metal nanoparticles in pharma. Cham: Springer; 2017.Google Scholar
  11. Caizer C, Tura V. Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles. J Magn Magn Mater. 2006;301:513–20.CrossRefGoogle Scholar
  12. Caizer C, Hadaruga N, Hadaruga D, Tanasie G, Vlazan P. The Co ferrite nanoparticles/liposomes: magnetic bionanocomposites for applications in malignant tumors therapy. In: The 7th international conference on inorganic materials, 12–14 Sept, Biarritz, France, 2010a.Google Scholar
  13. Caizer C, Stancu A, Postolache P, Dumitru I, Bodale I, Vlazan P. The magnetic properties of the CoδFe(3-δ)O4 surfacted nanoparticles with potential applications in cancer therapy. In: The 7th international conference on fine particle magnetism (ICFPM-2010), 21–24 Jun, Uppsala, Sweden, 2010b.Google Scholar
  14. Caizer C, Soica C, Dehelean C, Radu A, Caizer IS. Study on toxicity of the superparamagnetic nanoparticles on the cells in order to use them in cancer therapy. In: The 8th international conference on fine particle magnetism, 24–27 Jun, Perpignan, France, 2013.Google Scholar
  15. Caizer C, Buteica A, Mindrila I. Biocompatible magnetic oxide nanoparticles with metal ions coated with organic shell as potential therapeutic agents in cancer, Ch. 11. In: Rai M, Shegokar R, editors. Metal nanoparticles in pharma. Cham: Springer; 2017.Google Scholar
  16. Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, Hernandez R, Meyerand ME, Barnhart TE, Cai W. Chelator-free synthesis of a dual-modality PET/MRI agent. Angew Chem. 2013;52:13319–23.CrossRefGoogle Scholar
  17. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2:17024.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Datta NR, Krishnan S, Speiser DE, Neufeld E, Kuster N, Bodis S, Hofmann H. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treat Rev. 2016;50:217–27.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Denoyer D, Greguric I, Roselt P, Neels OC, Aide N, Taylor SR, Katsifis A, Dorow DS, Hicks RJ. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. J Nucl Med. 2010;51:441–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Di Corato R, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clément O, Silva AK, Ménager C, Wilhelm C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano. 2015;9:2904–16.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Durymanov MO, Rosenkranz AA, Sobolev AS. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics. 2015;5:1007–20.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Engelmann U, Roeth A, Eberbeck D, Buhl E, Neumann U, Schmitz-Rode T, Slabu I. Combining bulk temperature and nanoheating enables advanced magnetic fluid hyperthermia efficacy on pancreatic tumor cells. Sci Rep. 2018;8:13210.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Espinosa A, Bugnet M, Radtke G, Neveu S, Botton GA, Wilhelm C, Abou-Hassan A. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia? Nanoscale. 2015;7:18872–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fortin JP, Gazeau F, Wilhelm C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J. 2008;37:223–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gazeau F, Lévy M, Wilhelm C. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine. 2008;3:831–44.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Goya G, Asín L, Ibarra R. Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives. Int J Hyperthermia. 2013;29:810–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Guoa Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release. 2018;272:145–58.CrossRefGoogle Scholar
  28. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gupta R, Sharma D. Evolution of magnetic hyperthermia for glioblastoma multiforme therapy. ACS Chem Neurosci. 2019;10:1157–72.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, McHenry ME. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J Appl Phys. 2008;103:07A307-1–3.CrossRefGoogle Scholar
  31. Han Y, Lei S, Lu J, He Y, Chen Z, Ren L, Zhoua X. Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C. 2016;64:199–207.CrossRefGoogle Scholar
  32. Hejase H, Hayek S, Qadri S, Haik Y. MnZnFe nanoparticles for self-controlled magnetic hyperthermia. J Magn Magn Mater. 2012;324:3620–8.CrossRefGoogle Scholar
  33. Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311:187–92.CrossRefGoogle Scholar
  34. Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006;18:S2919–34.CrossRefGoogle Scholar
  35. Hilger I. In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia. 2013;29:828–34.PubMedCrossRefGoogle Scholar
  36. Hilger I, Hergt R, Kaiser WA. Towards breast cancer treatment by magnetic heating. J Magn Magn Mater. 2005;293:314–9.CrossRefGoogle Scholar
  37. Hodgson J. ADMET-turning chemicals into drugs. Nat Biotechnol. 2001;19:722–6.PubMedCrossRefGoogle Scholar
  38. Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials. 2009;30:3956–60.PubMedCrossRefGoogle Scholar
  39. Hu R, Ma S, Li H, Ke X, Wang G, Wei D, Wang W. Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol Lett. 2011;2:1161–4.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hu R, Zhang X, Liu X, Xu B, Yang H, Xia Q, Li L, Chen C, Tang J. Higher temperature improves the efficacy of magnetic fluid hyperthermia for Lewis lung cancer in a mouse model. Thorac Cancer. 2012;3:34–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Huang MH, Yang MC. Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Int J Pharm. 2008;346:38e46.CrossRefGoogle Scholar
  42. Iatridi Z, Vamvakidis K, Tsougos I, Vassiou K, Dendrinou-Samara C, Bokias G. Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications. ACS Appl Mater Interfaces. 2016;8:35059–70.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ito A, Matsuoka F, Honda H, Kobayashi T. Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther. 2003a;10:918–25.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayaschi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003b;96:364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett. 2004;212:167–75.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jansen AP, Verwiebe EG, Dreckschmidt NE, Wheeler DL, Oberley TD, Verma AK. Protein kinase C-epsilon transgenic mice: a unique model for metastatic squamous cell carcinoma. Cancer Res. 2001;61:808–12.PubMedPubMedCentralGoogle Scholar
  48. Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldofner N. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate. 2005;64:283–92.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52:1653–62.PubMedCrossRefGoogle Scholar
  50. Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44:1050–60.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78:7–14.PubMedCrossRefGoogle Scholar
  52. Kandasamy G, Sudame A, Bhati P, Chakrabarty A, Maity D. Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq. 2018;256:224–37.CrossRefGoogle Scholar
  53. Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater. 2011;23:H217–47.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat. 2009;113:435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13:257–69.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kircher MF, Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011;6:1342–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, Salas G, Patel V, Teran FJ, Hilger I. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res. 2014;31:3274–88.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, Calero M, Sader M, Courty J, Volkov Y, Prina-Mello A, Villanueva A, Somoza Á, Cortajarena AL, Miranda R, Hilger I. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015;17:66.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kubovcikova M, Koneracka M, Strbak O, Molcana M, Zavisova V, Antal I, Khmara I, Lucanska D, Tomco L, Barathova M, Zatovicov M, Dobrota D, Pastorekova S, Kopcansky P. Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J Magn Magn Mater. 2019;475:316–26.CrossRefGoogle Scholar
  61. Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Laurent S, Dutz S, Häfeli U, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166:8–23.PubMedCrossRefGoogle Scholar
  63. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol. 2011;6:418–22.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY, Jeong H, Kong BJ, Stout DB, Cheon J, Tseng HR. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed Engl. 2013;52:4384–4388.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lee YB, Song EJ, Kim SS, Kim JW, Yu DS. Safety and efficacy of a novel injectable filler in the treatment of nasolabial folds: polymethylmethacrylate and cross-linked dextran in hydroxypropyl methylcellulose. J Cosmet Laser Ther. 2014;16:185e190.Google Scholar
  66. Li S, Lin S, Daggy BP, Mirchandani HL, Chien YW. Effect of HPMC and carbopol on the release and floating properties of gastric floating drug delivery system using factorial design. Int J Pharm. 2003;253:13e22.CrossRefGoogle Scholar
  67. Li C, Chi S, Xie J. Hedgehog signaling in skin cancers. Cell Signal. 2011;23:1235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lima-Tenório MK, Edgardo A, Pineda G, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. 2015;493:313–27.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Liu RT, Liu J, Tong JQ, Tang T, Kong WC, Wang XW, Li Y, Tang JT. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Prog Nat Sci Mater Int. 2012;22:31–9.CrossRefGoogle Scholar
  70. Liu XL, Ng CT, Chandrasekharan P, Yang HT, Zhao LY, Peng E, Lv YB, Xiao W, Fang J, Yi JB, Zhang H, Chuang CH, Bay BH, Ding J, Fan HM. Synthesis of ferromagnetic Fe0.6Mn0.4O nanoflowers as a new class of magnetic theranostic platform for in vivo T1-T2 Dual-Mode magnetic resonance imaging and magnetic hyperthermia therapy. Adv Healthcare Mater. 2016a;5:2092–104.CrossRefGoogle Scholar
  71. Liu Y, Kang N, Lv J, Zhou Z, Zhao Q, Ma L, Chen Z, Ren L, Nie L. Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites. Adv Mater. 2016b;28:6411–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Liu J, Chen Y, Wang G, Lv Q, Yang Y, Wang J, Zhang P, Liu J, Xie Y, Zhang L, Xie M. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes. Biomaterials. 2018;162:200–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mahmoudi K, Alexandros Bouras A, Dominique Bozec D, Robert Ivkov R, Constantinos HC. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperthermia. 2018;34:1316–28.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mancuso M, Gallo D, Leonardi S, Pierdomenico M, Pasquali E, De Stefano I, Rebessi S, Tanori M, Scambia G, Di Majo V, Covelli V, Pazzaglia S, Saran A. Modulation of basal and squamous cell carcinoma by endogenous estrogen in mouse models of skin cancer. Carcinogenesis. 2009;30:340–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Matsuoka F, Shinkai M, Honda H, Kubo T, Sugita T, Kobayashi T. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol. 2004;2(3):1–6.Google Scholar
  76. Mehdaoui B, Meffre A, Lacroix LM, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B. Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater. 2010;322:L49–52.CrossRefGoogle Scholar
  77. Moroz P, Jones SK, Gray BN. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol. 2002;80:149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Muralidhar R, Swamy GS, Vijayalakshmi P. Completion rates of anterior and posterior continuous curvilinear capsulorrhexis in pediatric cataract surgery for surgery performed by trainee surgeons with the use of a low-cost viscoelastic. Indian J Ophthalmol. 2012;60:144–6.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Naumova AV, Modo M, Moore A, Murry CE, Frank JA. Clinical imaging in regenerative medicine. Nat Biotechnol. 2014;32:804–18.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles—in vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci. 2017;249:192–212.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ondeck CL, Habib AH, Ohodnicki P, Miller K, Sawyer CA. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys. 2009;105:07B324-1–3.CrossRefGoogle Scholar
  82. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nano-particles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.CrossRefGoogle Scholar
  83. Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK. Poly (vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med. 2003;14:687e691.CrossRefGoogle Scholar
  84. Parhi R, Suresh P, Patnaik S. Formulation optimization of PVA/HPMC cryogel of Diltiazem HCl using 3-level factorial design and evaluation for ex vivo permeation. J Pharm Investig. 2015;45:319–27.CrossRefGoogle Scholar
  85. Pavel M, Stancu A. Study of the optimum injection sites for a multiple metastases region in cancer therapy by using MFH. IEEE Trans Magn. 2009;45:4825–8.CrossRefGoogle Scholar
  86. Pavel M, Gradinariu G, Stancu A. Study of the optimum dose of ferromagnetic nanoparticles suitable for cancer therapy using MFH. IEEE Trans Magn. 2008;44:3205–8.CrossRefGoogle Scholar
  87. Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, Banerjee R, Bahadur D. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res B Appl Biomater. 2007;81B:12–22.CrossRefGoogle Scholar
  88. Purushotham S, Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys. 2010;107:114701-1–9.CrossRefGoogle Scholar
  89. Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res. 2006;8:489–96.CrossRefGoogle Scholar
  90. Qu Y, Li J, Ren J, Leng J, Lin C, Shi D. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of MnxZn1−xFe2O4 nanoparticles for induced tumor cell apoptosis. ACS Appl Mater Interfaces. 2014;6:16867–79.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.CrossRefGoogle Scholar
  92. Safarik I, Safarikova M. Magnetic nanoparticles and biosciences. Monatch Chem. 2002;133:737–59.CrossRefGoogle Scholar
  93. Saldívar-Ramírez MM, Sánchez-Torres CG, Cortés-Hernández DA, Escobedo-Bocardo JC, Almanza-Robles JM, Larson A, Reséndiz-Hernández PJ, Acuña-Gutiérrez IO. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J Mater Sci Mater Med. 2014;25:2229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Selvan ST, Tan TTY, Yi DK, Jana NR. Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir. 2010;26:11631–41.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44:4501–16.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shinkai M, Ito A. Functional magnetic particles for medical application. Adv Biochem Eng/Biotechnol. 2004;91:191–220.Google Scholar
  97. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163e174.CrossRefGoogle Scholar
  98. Sivakumar B, Aswathy RG, Nagaoka Y, Suzuki M, Fukuda T, Yoshida Y, Maekawa T, Sakthikumar DN. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer. Langmuir. 2013;29:3453–66.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Smit J, Wijin HPJ. Les ferrites. Paris: Bibl Tech Philips; 1961.Google Scholar
  100. Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE. Targeted nanoparticles for detecting and treating cancer. Drug Develop Res. 2006;67:70–93.CrossRefGoogle Scholar
  101. Tanaka K, Ito A, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer. 2005;116:624–33.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tartaj P, Veintemillas-Verdaguer S, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R182.CrossRefGoogle Scholar
  103. Thorat N, Bohara R, Noor MR, Dhamecha D, Soulimane T, Tofail S. Effective cancer theranostics with polymer encapsulated superparamagnetic nanoparticles: combined effects of magnetic hyperthermia and controlled drug release. ACS Biomater Sci Eng. 2017;3:1332–40.CrossRefGoogle Scholar
  104. Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:e1476.CrossRefGoogle Scholar
  105. Tian X, Liu S, Zhu J, Qian Z, Bai L, Pan Y. Biofunctional magnetic hybrid nanomaterials for theranostic applications. Nanotechnology. 2019;30:032002, 10pp.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Valenzuela R. Magnetic ceramics. Cambridge: Cambridge University Press; 1994. p. 137–42.CrossRefGoogle Scholar
  107. Wang L, Dong J, Ouyang W, Wang X, Tang J. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol Rep. 2012;27:719–26.PubMedPubMedCentralGoogle Scholar
  108. Wang J, Zhou Z, Wang L, Wei J, Yang H, Yang S, Zhao J. CoFe2O4@MnFe2O4/polypyrrole nanocomposites for in vitro photothermal/magnetothermal combined therapy. RSC Adv. 2015a;5:7349–55.CrossRefGoogle Scholar
  109. Wang P, Xie X, Wang J, Shi Y, Shen N, Huang X. Ultra-small superparamagnetic iron oxide mediated magnetic hyperthermia in treatment of neck lymph node metastasis in rabbit pyriform sinus VX2 carcinoma. Tumor Biol. 2015b;36:8035–40.CrossRefGoogle Scholar
  110. Wang F, Yang Y, Ling Y, Liu J, Cai X, Zhou X, Tang X, Liang B, Chen Y, Chen H, Chen D, Li C, Wang Z, Hu B, Zheng Y. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe3O4 for magnetic hyperthermia ablation of tumors. Biomaterials. 2017;128:84e93.Google Scholar
  111. Xue X, Huang Y, Bo R, Jia B, Wu H, Yuan Y, Wang Z, Ma Z, Jing D, Xu X, Yu W, Lin TY, Li Y. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat Commun. 2018;9:3653.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yamanaka K, Nakahara T, Yamauchi T, Kita A, Takeuchi M. Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin Cancer Res. 2011;17:5423–31.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Yan H, Shang W, Sun X, Zhao L, Wang J, Xiong Z, Yuan J, Zhang R, Huang Q, Wang K, Li B, Tian J, Kang F, Feng SS. “All-in-One” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous administration. Adv Funct Mater. 2018;28:1705710-1–12.Google Scholar
  114. Yang HW, Hua MY, Hwang TL, Lin KJ, Huang CY, Tsai RY, Ma CC, Hsu PH, Wey SP, Hsu PW, Chen PY, Huang YC, Lu YJ, Yen TC, Feng LY, Lin CW, Liu HL, Wei KC. Non-invasive synergistic treatment of brain tumors by targeted chemotherapeutic delivery and amplified focused ultrasound-hyperthermia using magnetic nanographene oxide. Adv Mater. 2013;25:3605–11.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Yi G, Gu B, Chen L. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol. 2014;35:2445–9.CrossRefGoogle Scholar
  116. Zeng Q, Baker I, Loudis JA, Liao Y, Hoopes PJ, Weaver JB. Fe∕Fe oxide nanocomposite particles with large specific absorption rate for hyperthermia. Appl Phys Lett. 2007;90:233112.CrossRefGoogle Scholar
  117. Zhou P, Zhao H, Wang Q, Zhou Z, Wang J, Deng G, Wang X, Liu Q, Yang H, Yang S. Photoacoustic-enabled self-guidance in magnetic hyperthermia Fe@Fe3O4 nanoparticles for theranostics in vivo. Adv Healthcare Mater. 2018;7:e1701201.CrossRefGoogle Scholar
  118. Zhu L, Ma J, Jia N, Zhao Y, Shen H. Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerface. 2009;68:1–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsWest University of TimisoaraTimisoaraRomania

Personalised recommendations