Biosynthesized Metallic Nanoparticles as Emerging Cancer Theranostics Agents

  • Muhammad OvaisEmail author
  • Ali Talha Khalil
  • Muhammad Ayaz
  • Irshad Ahmad


Cancer is considered as a great health challenge liable for outstripped demises worldwide. Currently it is treated mainly by chemotherapy and radiotherapy. However, there is a perpetual demand for the development of novel therapeutic drugs to combat this devastating disease. In this regard nanomedicine can provide an alternative platform for its diagnosis and treatment but its conventional synthesis through physiochemical methods has several shortcomings like high cost, energy intensive, and toxicity concerns. Consequently, the green synthesis of biogenic metallic nanoparticles (MNPs) from plants provides an alternate paradigm which has been proved safer, eco-friendly, energy proficient, inexpensive, and less toxic in nature. Additionally, the green MNPs have multipurpose biomedical applications like drug delivery agents, anticancerous mediators, photothermal therapy, and bio-imaging. This chapter will provide ample information on the current status of green MNPs, its anticancerous mechanisms, and efficiency in cancer diagnosis. Other issues like polydispersity and toxicity are also highlighted. Keeping in view all of the challenges, the authors anticipate biogenic MNPs may contribute to shift the paradigm toward development of novel nanomedicine that can prove as biocompatible theranostic agents in near future.


Metal nanoparticles Bionanomaterials Cancer theranostics Green synthesis Biocompatibility 


  1. Adamson IY. Pulmonary toxicity of bleomycin. Environ Health Perspect. 1976;16:119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed KBA, Subramaniam S, Veerappan G, Hari N, Sivasubramanian A, Veerappan A. β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Adv. 2014;4(103):59130–6.CrossRefGoogle Scholar
  3. Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med. 2010;9(45):145–52.PubMedGoogle Scholar
  4. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andersen MD, Kamper P, d’Amore A, Clausen M, Bentzen H, d’Amore F. The incidence of bleomycin induced lung toxicity is increased in Hodgkin lymphoma patients over 45 years exposed to granulocyte-colony stimulating growth factor. Leuk Lymphoma. 2019;60(4):927–33.PubMedCrossRefGoogle Scholar
  6. Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102.PubMedCrossRefGoogle Scholar
  7. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology. 2011;5(1):43–54.PubMedCrossRefGoogle Scholar
  8. Avilés A, Arévila N, Díaz Maqueo JC, Gómez T, García R, Nambo MJ. Late cardiac toxicity of doxorubicin, epirubicin, and mitoxantrone therapy for Hodgkin’s disease in adults. Leuk Lymphoma. 1993;11(3-4):275–9.PubMedCrossRefGoogle Scholar
  9. Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts. 2013;3(3):111–7.PubMedPubMedCentralGoogle Scholar
  10. Beach JA, Nary LJ, Hirakawa Y, Holland E, Hovanessian R, Medh RD. E4BP4 facilitates glucocorticoid-evoked apoptosis of human leukemic CEM cells via upregulation of Bim. J Mol Signal. 2011;6(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem. 2012;31(12):2812–20.PubMedCrossRefGoogle Scholar
  12. Bhaumik J, Thakur NS, Aili PK, Ghanghoriya A, Mittal AK, Banerjee UC. Bioinspired nanotheranostic agents: synthesis, surface functionalization, and antioxidant potential. ACS Biomater Sci Eng. 2015;1(6):382–92.CrossRefGoogle Scholar
  13. Boilève A, Wicker C, Verret B, Leroy F, Malka D, Jozwiak M, Pontoizeau C, Ottolenghi C, De Lonlay P, Ducreux M, Hollebecque A. 5-Fluorouracil rechallenge after 5-fluorouracil-induced hyperammonemic encephalopathy. Anti-Cancer Drugs. 2019;30(3):313–7.PubMedCrossRefGoogle Scholar
  14. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMedGoogle Scholar
  15. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–102.PubMedCrossRefGoogle Scholar
  16. Chang YJ, Tai CJ, Kuo LJ, Wei PL, Liang HH, Liu TZ, Wang W, Tai CJ, Ho YS, Wu CH, Huang MT. Glucose-regulated protein 78 (GRP78) mediated the efficacy to curcumin treatment on hepatocellular carcinoma. Ann Surg Oncol. 2011;18(8):2395–403.PubMedCrossRefGoogle Scholar
  17. Dahoumane SA, Mechouet M, Wijesekera K, Filipe CDM, Sicard C, Bazylinski DA, Jeffryes C. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—a review. Green Chem. 2017;19(3):552–87.CrossRefGoogle Scholar
  18. Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016;55(36):9557–77.CrossRefGoogle Scholar
  19. de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012;32(11):867–79.PubMedCrossRefGoogle Scholar
  20. Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44(16):5778–92.PubMedCrossRefGoogle Scholar
  21. Farzanegi P, Asadi M, Abdi A, Etemadian M, Amani M, Amrollah V, Shahri F, Gholami V, Abdi Z, Moradi L, Ghorbani S. Swimming exercise in combination with garlic extract administration as a therapy against doxorubicin-induced hepatic, heart and renal toxicity to rats. Toxin Rev. 2019:1–10.
  22. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.CrossRefGoogle Scholar
  23. Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs. 1991;42(5):781–95.PubMedCrossRefGoogle Scholar
  24. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423–33.PubMedCrossRefGoogle Scholar
  25. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 2010;49(19):3280–94.CrossRefGoogle Scholar
  26. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int. 2013;2013:535796.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, Maaza M. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine. 2019;14(6):655–73.PubMedCrossRefGoogle Scholar
  29. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  30. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42.PubMedCrossRefGoogle Scholar
  31. Hollstein M, Alexandrov LB, Wild CP, Ardin M, Zavadil J. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer. Oncogene. 2017;36(2):158–67.PubMedCrossRefGoogle Scholar
  32. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol. 2018;102(22):9449–70.PubMedCrossRefGoogle Scholar
  33. Iravani S, Zolfaghari B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int. 2013;2013:1–5.CrossRefGoogle Scholar
  34. Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett. 2009;188(2):112–8.PubMedCrossRefGoogle Scholar
  35. Khalil AT, Ovais M, Ullah I, Ali M, Jan SA, Shinwari ZK, Maaza M. Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arabian J Chem. 2017.
  36. Khalil AT, Ayaz M, Ovais M, Wadood A, Ali M, Shinwari ZK, Maaza M. In vitro cholinesterase enzymes inhibitory potential and in silico molecular docking studies of biogenic metal oxides nanoparticles. Inorg Nano-Metal Chem. 2018a;48(9):441–8.CrossRefGoogle Scholar
  37. Khalil AT, Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. 2018b;46(4):838–52.PubMedCrossRefGoogle Scholar
  38. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2017. Scholar
  39. Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK. Therapeutic application of metallic nanoparticles combined with particle-induced X-ray emission effect. Nanotechnology. 2010;21(42):425102.PubMedCrossRefGoogle Scholar
  40. Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, Yu IJ. In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work. 2011;2(1):34–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kora AJ, Sashidhar RB. Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action. Arabian J Chem. 2018;11(3):313–23.CrossRefGoogle Scholar
  42. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2012;90:173–6.PubMedCrossRefGoogle Scholar
  43. Kumari R, Barsainya M, Singh DP. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ Sci Pollut Res. 2017;24(5):4645–54.CrossRefGoogle Scholar
  44. Lacave JM, Vicario-Parés U, Bilbao E, Gilliland D, Mura F, Dini L, Cajaraville MP, Orbea A. Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels. Sci Total Environ. 2018;642:1209–20.PubMedCrossRefGoogle Scholar
  45. Lim Z-ZJ, Li J-EJ, Ng C-T, Yung L-YL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Macdonald JS. Toxicity of 5-fluorouracil. Oncology. 1999;13(7 Suppl 3):33–4.PubMedGoogle Scholar
  47. Mal J, Veneman WJ, Nancharaiah YV, van Hullebusch ED, Peijnenburg WJ, Vijver MG, Lens PN. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2017;11(1):87–97.PubMedCrossRefGoogle Scholar
  48. Manimaran M. A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res. 2015;5(7):13–5.Google Scholar
  49. Manzoor M, Khan AHA, Ullah R, Khan MZ, Ahmad I. Environmental epidemiology of cancer in South Asian population: risk assessment against exposure to polycyclic aromatic hydrocarbons and volatile organic compounds. Arabian J Sci Eng. 2016;41(6):2031–43.CrossRefGoogle Scholar
  50. Mao X, Seidlitz E, Truant R, Hitt M, Ghosh HP. Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene. 2004;23(33):5632–42.PubMedCrossRefGoogle Scholar
  51. Mei N, Zhang Y, Chen Y, Guo X, Ding W, Ali SF, Biris AS, Rice P, Moore MM, Chen T. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen. 2012;53(6):409–19.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Minai L, Yeheskely-Hayon D, Yelin D. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation. Scient Rep. 2013;3:2146.CrossRefGoogle Scholar
  53. Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 2016;8(25):12444–70.PubMedCrossRefGoogle Scholar
  54. Mukherjee S, Sushma V, Patra S, Barui AK, Bhadra MP, Sreedhar B, Patra CR. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology. 2012;23(45):455103.PubMedCrossRefGoogle Scholar
  55. Mukherjee S, Vinothkumar B, Prashanthi S, Bangal PR, Sreedhar B, Patra CR. Potential therapeutic and diagnostic applications of one-step in situ biosynthesized gold nanoconjugates (2-in-1 system) in cancer treatment. RSC Adv. 2013;3(7):2318–29.CrossRefGoogle Scholar
  56. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316–35.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollu VS, Patra CR. A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J Mater Chem B. 2015;3(18):3820–30.CrossRefGoogle Scholar
  58. Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12(3):788–800.CrossRefGoogle Scholar
  59. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine. 2016;12(23):3157–77.CrossRefGoogle Scholar
  60. Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101(9):3551–65.PubMedCrossRefGoogle Scholar
  61. Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK. Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front Aging Neurosci. 2018a;10:284.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci. 2018b;19(12):4100.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Padinjarathil H, Joseph MM, Unnikrishnan BS, Preethi GU, Shiji R, Archana MG, Maya S, Syama HP, Sreelekha TT. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol. 2018;118:1174–82.PubMedCrossRefGoogle Scholar
  64. Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro. 2011;25(5):1097–105.PubMedCrossRefGoogle Scholar
  65. Papavlassopoulos H, Mishra YK, Kaps S, Paulowicz I, Abdelaziz R, Elbahri M, Maser E, Adelung R, Röhl C. Toxicity of functional nano-micro zinc oxide tetrapods: impact of cell culture conditions, cellular age and material properties. PLoS One. 2014;9(1):e84983.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Park Y. New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol Res. 2014;30(3):169.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Patra CR, Mukherjee S, Kotcherlakota R. Biosynthesized silver nanoparticles: a step forward for cancer theranostics? Nanomedicine. 2014;9(10):1445–8.PubMedCrossRefGoogle Scholar
  68. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C. 2015;53:298–309.CrossRefGoogle Scholar
  69. Rahman S, Rahman L, Khalil AT, Ali N, Zia D, Ali M, Shinwari ZK. Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Appl Microbiol Biotechnol. 2019;103:1–19.CrossRefGoogle Scholar
  70. Rai M, Ingle AP, Birla S, Yadav A, Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. 2016;42(5):696–719.PubMedGoogle Scholar
  71. Rao PV, Gan SH. Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab. 2015;16(5):371–5.PubMedCrossRefGoogle Scholar
  72. Roy N, Mondal S, Laskar RA, Basu S, Begum NA. Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids Surf B Biointerfaces. 2010;76(1):317–25.PubMedCrossRefGoogle Scholar
  73. Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci. 2010;115(2):521–34.PubMedCrossRefGoogle Scholar
  74. Shah A, Lutfullah G, Ahmad K, Khalil AT, Maaza M. Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem Lett Rev. 2018;11(3):318–33.CrossRefGoogle Scholar
  75. Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51(1):58–63.PubMedCrossRefGoogle Scholar
  76. Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2018;26(8):617–32.PubMedCrossRefGoogle Scholar
  77. Silva-De Hoyos LE, Sánchez-Mendieta V, Camacho-López MA, Trujillo-Reyes J, Vilchis-Nestor AR. Plasmonic and fluorescent sensors of metal ions in water based on biogenic gold nanoparticles. Arabian J Chem. 2018.
  78. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh ME, Yang DC. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomed. 2015;10:2567–77.Google Scholar
  79. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–99.PubMedCrossRefGoogle Scholar
  80. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):65.CrossRefGoogle Scholar
  81. Sufian MM, Khattak JZK, Yousaf S, Rana MS. Safety issues associated with the use of nanoparticles in human body. Photodiagn Photodyn Ther. 2017;19:67–72.CrossRefGoogle Scholar
  82. Suresh AK, Pelletier DA, Doktycz MJ. Relating nanomaterial properties and microbial toxicity. Nanoscale. 2013;5(2):463–74.PubMedCrossRefGoogle Scholar
  83. Sweeney SF, Woehrle GH, Hutchison JE. Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc. 2006;128(10):3190–7.PubMedCrossRefGoogle Scholar
  84. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.PubMedGoogle Scholar
  85. Tessier PM, Velev OD, Kalambur AT, Lenhoff AM, Rabolt J, Kaler EW. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv Mater. 2001;13(6):396–400.CrossRefGoogle Scholar
  86. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Prev Biomark. 2016;25(1):16–27.CrossRefGoogle Scholar
  87. Velayutham M, Villamena FA, Fishbein JC, Zweier JL. Cancer chemopreventive oltipraz generates superoxide anion radical. Arch Biochem Biophys. 2005;435(1):83–8.PubMedCrossRefGoogle Scholar
  88. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100(6):2555–66.PubMedCrossRefGoogle Scholar
  89. WHO. Obesity and overweight fact sheet. 2017. Available from: Accessed 1 Jul 2018.
  90. Zhang D, Zhao YX, Gao YJ, Gao FP, Fan YS, Li XJ, Duan ZY, Wang H. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J Mater Chem B. 2013;1(38):5100–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Ovais
    • 1
    • 2
    Email author
  • Ali Talha Khalil
    • 3
  • Muhammad Ayaz
    • 4
  • Irshad Ahmad
    • 5
  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST)BeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Eastern Medicine and SurgeryQarshi UniversityLahorePakistan
  4. 4.Department of PharmacyUniversity of MalakandChakdaraPakistan
  5. 5.Department of Life SciencesKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations