A New Proof of Work for Blockchain Based on Random Multivariate Quadratic Equations

  • Jintai DingEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11605)


In this paper, we first present a theoretical analysis model on the Proof-of-Work (PoW) for cryptocurrency blockchain. Based on this analysis, we present a new type of PoW, which relies on the hardness of solving a set of random quadratic equations over the finite field GF(2). We will present the advantages of such a PoW, in particular, in terms of its impact on decentralization and the incentives involved, and therefore demonstrate that this is a new good alternative as a new type for PoW in blockchain applications.


Proof-of-Work Multivariate Quadratic NP-hard Decentralization Blockchain Cryptocurrency 



We would like to thank Johannes Buchmann, Albrecht Petzolt, Lei Hu, Hong Xiang, Peter Ryan, Tsuyoshi Takagi, Antoine Joux, Ruben Niederhagen, Chengdong Tao, Chen-mou Cheng, Zheng Zhang, and Kurt Schmidt for useful discussions. We would like to thank the anonymous referees for useful comments. We also would like to thank the ABCMint Foundation, in particular, Jin Liu for support.


  1. 1.
    Aggarwal, D., Brennen, G.K., Lee, T., Santha, M., Tomamichel, M.: Quantum-proofing the blockchain. Quantum attacks on Bitcoin, and how to protect against them. arXiv:1710.10377 (2017)
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)Google Scholar
  3. 3.
    Bouillaguet, C., et al.: Fast exhaustive search for polynomial systems in \(\mathbb{F}_{\text{2 }}\). In: Mangard, S., Standaert, F.X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer, Heidelberg (2010). Scholar
  4. 4.
    Buchberger., B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Innsbruck (1965)Google Scholar
  5. 5.
    Ding, J.: Quantum-proof blockchain. In: ETSI/IQC Quantum Safe Workshop 2018 (2018).
  6. 6.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Springer, Boston (2006). Scholar
  7. 7.
    Ding, J., Liu, J.: Panel on quantum-proof blockchain. Money20/20 Hanzhou China (2018).
  8. 8.
    Ding, J., Ryan, P., Sarawathy, R.C.: Future of bitcoin (and blockchain) with quantum computers. Preprint of University of Cincinnati, 10.2016. Submitted to Bitcoin 2017 under Financial Cryptography 2017Google Scholar
  9. 9.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). Scholar
  10. 10.
    Ding, J., Yang, B.-Y.: Multivariates polynomials for hashing. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 358–371. Springer, Heidelberg (2008). Scholar
  11. 11.
    Dobbertin, H.: The status of MD5 after a recent attack. CryptoBytes (2016)Google Scholar
  12. 12.
    Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993). Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)Google Scholar
  14. 14.
    Gheorghiu, V., Gorbunov, S., Mosca, M., Munson, B.: Quantum-proofing the blockchain, November 2017.
  15. 15.
    Kim, S.: Primecoin: cryptocurrency with prime number proof-of-work, March 2013.
  16. 16.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, October 2008.
  17. 17.
  18. 18.
    Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer, Heidelberg (2009). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of CincinnatiCincinnatiUSA

Personalised recommendations