Plasma Models in Hybrid RANS-LES Simulation for Backward Facing Step Flow Control

  • Palma Gonzalez
  • Ning QinEmail author
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 52)


This paper presents a study on the effects of a single discharge barrier dielectric barrier device on the periodic components of the turbulent shear layers and the Reynolds stresses. 3D simulations using improved delayed detached eddy simulation, a hybrid RANS/LES technique, has been used for the study. The geometry for the study is taken from the experimental configurations for this case. The case comprises a turbulent flow over a backward facing step (BFS), where separation is induced after the step edge. The results from the simulations are compared to the experimental data with and without control. The active flow control device is a single dielectric barrier discharge, DBD, plasma actuator located upstream of the step. The effects of quasi-steady and unsteady—or pulsated-plasma actuation using two different phenomenological models are studied. The resulting turbulent structures, Reynolds stresses, and velocity profiles are analysed applying two different models to simulate the plasma actuation. The results for quasi-steady plasma mode show good agreement with the available experimental data and a reduction of the reattachment length. Regarding modulated actuation of the DBD plasma device, three dimensional simulations are carried out and the results also show excellent agreement of the overall behaviour flow when compared to the experimental data.


Plasma models Detached Eddy Simulation Separation control 



This research has been partially funded by the European Commission (EC), though the Framework Programme 7 (FP7) Project #266326 entitled: “Manipulation of Reynolds Stress 382 for Separation Control and Drag Reduction” (MARS). The authors would also like to thank Dr W Wang for her help in running the cases.


  1. 1.
    Armaly BF et al (1983) Experimental and theoretical investigation of backward facing step flow. J Fluid Mech 127(473):20Google Scholar
  2. 2.
    Barri M et al (2010) DNS of backward-facing step flow with fully turbulent inflow. Int J Numer Meth Fluids 64:777–792MathSciNetzbMATHGoogle Scholar
  3. 3.
    Benard N, Sujar-Garrido P, Bayoda KD, Bonnet JP, Moreau E (2014) Pulsed dielectric barrier discharge for manipulation of turbulent flow downstream a backward facing step. AIAA paper 2014-1127Google Scholar
  4. 4.
    Benard N, Braud P, Jolibois J, Moreau E (2008) Airflow reattachment along a NACA 0015 airfoil by a surface dielectric barrier discharge actuator—time-resolved particle image velocimetry investigation. AIAA paper 2008-4202Google Scholar
  5. 5.
    Benard N, Bonnet JP, Touchard G, Moreau E (2008) Flow control by dielectric barrier discharge actuators–jet mixing enhancement. AIAA J 46(9):2293–2305CrossRefGoogle Scholar
  6. 6.
    Benard, N., Braud, P., Pons, J., Touchard, G., Moreau, E (2007) Quasi-steady and unsteady actuation by surface non-thermal plasma discharge for control of a turbulent round air jet. J Turbulence, Vol. 49Google Scholar
  7. 7.
    Chiang TP, Sheu TWH (1998) A numerical revisit of backward-facing step flow problem. Phys Fluids 11(4):862–874CrossRefGoogle Scholar
  8. 8.
    Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Ann Rev Fluid Mech 2010(42):505–529CrossRefGoogle Scholar
  9. 9.
    Driver DM, Seegmiller HL (1985) Features of a reattaching turbulent shear layer in divergent channel flow. AIAA J 23:163–171CrossRefGoogle Scholar
  10. 10.
    Enloe CL, McLaughin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594CrossRefGoogle Scholar
  11. 11.
    Fadai-Ghotbi A et al (2008) Revisiting URANS computations of the backward-facing step flow using second moment closuresGoogle Scholar
  12. 12.
    Falco RE (1979) A review of the current state of knowledge of turbulent boundary structure. Summary of the AFOSR/MSU research specialists workshop on coherent structure in turbulent boundary layers, AFOSR-TR-80-0290, 1979Google Scholar
  13. 13.
    Gregory JW (2007) Force production mechanisms of a dielectric-barrier discharge plasma actuator. AIAA paper 2007-185, 2007Google Scholar
  14. 14.
    Hoskinson, AR, Hershkowitz, N (2008) Flow measurements and plasma simulations of double and single DBD plasma actuators in quiescent air. In: 46th AIAA aerospace sciences meeting and exhibit, pp 1370, Reno, NV, 2008Google Scholar
  15. 15.
    Hunt JCR, Wray AA, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193–208Google Scholar
  16. 16.
    Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward facing step. J Fluid Mech 330:349–374CrossRefGoogle Scholar
  17. 17.
    Leonov SB, Yarantsev DA (2007) Quasi-DC discharge in high-speed flow for combustion enhancement. ICPIG 15–20, 2007Google Scholar
  18. 18.
    Lien FS, Leschziner MA (1994) Assessment of the turbulence-transport models including non-linear RNG eddy viscosity formulation and second-moment closure for flow over a BFSGoogle Scholar
  19. 19.
    Mertz BE, Corke TC (2011) Single-dielectric barrier discharge plasma actuator modelling and validation. J Fluid Mech 2011(669):557–583CrossRefGoogle Scholar
  20. 20.
    Miles RB (2000) Flow control by energy addition into high-speed air. AIAA 2000-2324, 2000Google Scholar
  21. 21.
    Opaits DF (2012) Dielectric barrier discharge plasma actuator for flow control. NASA/CR—2012-217655, 2012Google Scholar
  22. 22.
    Pons J, Moreau E, Touchard G (2005) Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics. J Phys D Appl Phys 38:3635CrossRefGoogle Scholar
  23. 23.
    Riherd M, Roy S, Rizzetta D, Visbal M (2011) Study of transient and unsteady effects of plasma actuation in transitional flow over an SD7003 airfoil. AIAA Paper 2011-1075, 49th AIAA aerospace meeting including the new horizons forum and aerospace exposition, Orlando, Florida, 4–7 Jan 2011Google Scholar
  24. 24.
    Roth JR (2003) Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects on a one atmosphere uniform glow discharge plasma. Phys Plasmas 10:2117CrossRefGoogle Scholar
  25. 25.
    Roy S, Gaitonde DV (2006) Force interaction of high pressure glow discharge with fluid flow for active separation control. Phys Plasmas 13:023503CrossRefGoogle Scholar
  26. 26.
    Roy S, Singh KP, Gaitonde DV (2007) Air plasma actuators for effective flow control. AIAA paper, 2007-184, 2007Google Scholar
  27. 27.
    Roy S, Singh KP (2007) Modeling plasma actuators with air chemistry for effective flow control. J Appl Phys 101:123308CrossRefGoogle Scholar
  28. 28.
    Roy S, Wang CC (2009) Bulk flow modification with horseshoe and serpentine plasma actuators. J Phys D: Appl Phys, vol 42Google Scholar
  29. 29.
    Santhanakrishnan A, Jacob JD (2006) Flow control using plasma actuators and linear/annular plasma synthetic jet actuators. In: 3rd AIAA flow control conference, San Francisco, CA, 2006, p 3033Google Scholar
  30. 30.
    Singh KP, Roy S (2008) Force approximation for a plasma actuator operating in atmospheric air. J Appl Phys 103:013305CrossRefGoogle Scholar
  31. 31.
    Sujar-Garrido P, Bernard N, Laurentie JC, Bonnet JP, Moreau E (2012) Modifications du tenseur de Reynolds turbulent en aval d’une marche descendante par actionneur plasma. 13ième Congrès Francophone de Techniques Laser, CFTL 2012—ROUEN, 18–21 Sept 2012Google Scholar
  32. 32.
    Shyy W, Jayaraman B, Andersson A (2002) Modelling of glow discharge-induced fluid dynamics. J Appl Phys 92:6434CrossRefGoogle Scholar
  33. 33.
    Visbal MR, Gaitonde DV, Roy S (2006) Control of transitional and turbulent flows using plasma-based actuators. AIAA Paper 2006-3230, San Francisco, CA, 5–8 June 2006Google Scholar
  34. 34.
    Wang W (2013) Passive and active flow control studies using hybrid RANS/LES simulations, Thesis (Ph.D.), The University of Sheffield, 2013Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of SheffieldSheffieldEngland, UK

Personalised recommendations