Advertisement

MEE-DBD Plasma Actuator Effect on Aerodynamics of a NACA0015 Aerofoil: Separation and 3D Wake

  • R. Erfani
  • Kostas KontisEmail author
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 52)

Abstract

Dielectric barrier discharge (DBD) plasma actuators have received considerable attention by many researchers for various flow control applications. Having no moving parts, being light-weight, easily manufacturable, and their ability to respond almost instantly are amongst the advantages which has made them a popular flow control device especially for application on aircraft wings. The new configuration of DBDs which uses multiple encapsulated electrodes (MEE) has been shown to produce a superior and more desirable performance over the standard actuator design. The objective of the current study is to examine the effect of this new actuator configuration on the aerodynamic performance of an aerofoil under leading edge separation and wake interaction conditions. The plasma actuator is placed at the leading edge of a symmetric NACA 0015 aerofoil which corresponds to the location of the leading edge slat. The aerofoil is operated in a chord Reynolds number of \(0.2\,\times \,10^6\). Surface pressure measurements along with the mean velocity profile of the wake using pitot measurements are used to determine the lift and drag coefficients, respectively. Particle image velocimetry (PIV) is also utilised to visualise and quantify the induced flow field. The results show improvement in aerodynamic performances of aerofoil under leading edge separation and also facing the wake region.

Keywords

Plasma actuator Dielectric barrier discharge (dbd) Flow control Leading edge separation Wake interaction 

References

  1. 1.
    Velkoff H, Ketcham J (1968) Effect of an electrostatic field on boundary layer transition. AIAA J 6(7):1381–1383CrossRefGoogle Scholar
  2. 2.
    Roth DM, Sherman JR and Wilkinson SP (1998) Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In: 36th Aerospace sciences meeting & exhibit, RenoGoogle Scholar
  3. 3.
    Opaits DF, Roupassov DV, Starikovskaia SM, Starikovskii AY, Zavialov IN, Saddoughi SG (2005) Plasma control of boundary layer using low-temperature non-equilibrium plasma of gas discharge. AIAA J 1180(43):10–13Google Scholar
  4. 4.
    Corke TC, Cavalieri DA, Matlis E (2002) Boundary-layer instability on sharp cone at Mach 3.5 with controlled input. AIAA J 40:1015–1018CrossRefGoogle Scholar
  5. 5.
    Grundmann S, Tropea C (2008) Delay of boundary-layer transition using plasma actuators. In: 46th AIAA aerospace sciences meeting and exhibit, paper number AIAA-2008-1369Google Scholar
  6. 6.
    He C, Corke TC, Patel MP (2009) Plasma flaps and slats: an application of weakly ionized plasma actuators. J Aircr 46(3):864–873CrossRefGoogle Scholar
  7. 7.
    Post ML, Corke TC (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42(11):2177–2184CrossRefGoogle Scholar
  8. 8.
    Huang J, Corke TC, Thomas FO (2006) Plasma actuators for separation control of low-pressure turbine blades. AIAA J 44(1):51–57CrossRefGoogle Scholar
  9. 9.
    Ruisi R, Zare-Behtash H, Kontis K, Erfani R (2016) Active flow control over a backward-facing step using plasma actuation. Acta Astronaut 126:354–363CrossRefGoogle Scholar
  10. 10.
    Rethmel C, Little J, Takashima K, Sinha A, Adamovich I, Samimy M (2011) Flow separation control over an airfoil with nanosecond pulse driven dbd plasma actuators. In: 49th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, Orlando, Florida, paper number AIAA-2011-487Google Scholar
  11. 11.
    Erfani R, Zare-Behtash H, Kontis K (2012) Plasma actuator: influence of dielectric surface temperature. Exp Therm Fluid Sci 42:258–264CrossRefGoogle Scholar
  12. 12.
    Hale C, Erfani R, Kontis K (2010 ) Plasma actuators with multiple encapsulated electrodes to influence the induced velocity. In: 48th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, AIAA-2010-1223Google Scholar
  13. 13.
    Hale C, Erfani R, Kontis K (2010) Plasma actuators with multiple encapsulated electrodes to influence the induced velocity : further configurations. In: 40th Fluid dynamics conference and exhibit, AIAA-2010-5106, number 2010–5106Google Scholar
  14. 14.
    Erfani R, Hale C, Kontis K (2011) The influence of electrode configuration and dielectric temperature on plasma actuator performance. In: 49th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, Orlando, AIAA-2011-955Google Scholar
  15. 15.
    Erfani R, Erfani T, Utyuzhnikov SV, Kontis K (2013) Optimisation of multiple encapsulated electrode plasma actuator. Aerosp Sci Technol 26(1):120–127CrossRefGoogle Scholar
  16. 16.
    Erfani R, Erfani T, Hale C, Kontis K, Utyuzhnikov SV (2011) Optimization of induced velocity for plasma actuator with multiple encapsulated electrodes using response surface methodology. In: 49th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, Orlando, AIAA-2011-1206Google Scholar
  17. 17.
    Squire LC (1989) Interactions between wakes and boundary-layers. Prog Aerosp Sci 26(3):261–288CrossRefGoogle Scholar
  18. 18.
    Doligalski TL, Walker JDA (1984) The boundary layer induced by a convected two-dimensional vortex. J Fluid Mech 139(1):1–28zbMATHCrossRefGoogle Scholar
  19. 19.
    Gartshore IS, Durbin PA, Hunt JCR (1983) The production of turbulent stress in a Shear flow by irrotational fluctuations. J Fluid Mech 137(1):307–329CrossRefGoogle Scholar
  20. 20.
    Takagi Y, Fujisawa N, Nakano T, Nashimoto A (2006) Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil. J Sound Vib 297(3–5):563–577CrossRefGoogle Scholar
  21. 21.
    Pfeil H, Herbst R, Schroder T (1982) Investigation of the laminar-turbulent transition of boundary layers disturbed by wakes. In: American society of mechanical engineers, 27th international gas turbine conference and exhibit, London, EnglandGoogle Scholar
  22. 22.
    Liu X, Rodi W (2006) Experiments on transitional boundary layers with wake-induced unsteadiness. J Fluid Mech Digital Archive 231:229–256CrossRefGoogle Scholar
  23. 23.
    Kyriakides NK, Kastrinakis EG, Nychas SG, Goulas A (1999) Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA J 37(10):1197–1205zbMATHCrossRefGoogle Scholar
  24. 24.
    Mailach R, Vogeler K (2002) Wake-induced boundary layer transition in a low-speed axial compressor. Flow Turbul Combust 69(3):271–294zbMATHCrossRefGoogle Scholar
  25. 25.
    Bloy AW, West MG, Lea K (1993) Lateral aerodynamics interference between tanker and receiver in air-to-air refueling. J Aircr 30(5):705–710CrossRefGoogle Scholar
  26. 26.
    Iversen JD, Bernstein S (1974) Trailing vortex effects on following aircraft. J Aircr 11:60CrossRefGoogle Scholar
  27. 27.
    Kornilov VI, Pailhas G, Aupoix B (2002) Airfoil-boundary layer subjected to a two-dimensional asymmetrical turbulent wake. AIAA J 40(8):1549–1558CrossRefGoogle Scholar
  28. 28.
    Enloe CL, McLaughlin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC, Post M, Haddad O (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: geometric effects. AIAA J 42(3):595–604CrossRefGoogle Scholar
  29. 29.
    Erfani R, Zare-Behtash H, Kontis K (2012) Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance. J Phys D Appl Phys 45:225201CrossRefGoogle Scholar
  30. 30.
    Enloe CL, McLaughlin TE, VanDyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J 42(3):589–594CrossRefGoogle Scholar
  31. 31.
    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E (2009) Experimental study on the transition of the discharge modes in air dielectric barrier discharge. J Phys D Appl Phys 42:085203CrossRefGoogle Scholar
  32. 32.
    Enloe CL, McHarg MG, McLaughlin TE (2008) Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J Appl Phys 103:073302CrossRefGoogle Scholar
  33. 33.
    Erfani R, Zare-Behtash H, Hale C, Kontis K (2015) Development of dbd plasma actuators: the double encapsulated electrode. Acta Astronaut 109:132–143CrossRefGoogle Scholar
  34. 34.
    Zdravkovich MM (1997) Flow around circular cylinders: fundamentals. Oxford science publications, Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Nakagawa T (1986) A formation mechanism of alternating vortices behind a circular cylinder at high reynolds number. J Wind Eng Ind Aerodyn 25(1):113–129CrossRefGoogle Scholar
  36. 36.
    Roshko A (1961) Experiments on the flow past a circular cylinder at very high reynolds number. J Fluid Mech 10(03):345–356zbMATHCrossRefGoogle Scholar
  37. 37.
    Luk KF, So RMC, Kot SC, Lau YL, Leung RCK (2002) Airfoil vibration due to upstream alternating vortices generated by a circular cylinder. ASME Appl Mech Div Publ-AMD 253(A):79–88Google Scholar
  38. 38.
    Roth JR, Dai X (2006) Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. In: 44th AIAA aerospace sciences meeting and exhibit, Reno, paper number AIAA 2006-1203 pp 9–12,Google Scholar
  39. 39.
    Erfani R, Hale C, Kontis K (2012) Flow control of a NACA 0015 airfoil in a turbulent wake using plasma actuators. In: 50th AIAA aerospace sciences meeting including the New Horizons forum and aerospace exposition, AIAA-2012-187Google Scholar
  40. 40.
    Abbott IH, Doenhoff AEV (1959) Theory of wing sections, including a summary of airfoil data. Dover books on physics and chemistry, Dover PublicationsGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of EngineeringManchester Metropolitan UniversityManchesterUK
  2. 2.School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations