Diurnal Cycle of Precipitation in the Himalayan Foothills – Observations and Model Results

  • Bodo AhrensEmail author
  • Thomas Meier
  • Erwan Brisson


The interplay of the Indian Monsoon and the Himalayas is vital to many climatological aspects of the Himalayan foothill and foreland regions. A unique climate feature in the Himalayan foothill and foreland regions is a bi-modal diurnal cycle of precipitation with high rainfall amounts in the afternoon and around midnight. The reason for this night-time precipitation maximum is not yet fully understood, and current climate models do not well represent the regions’ diurnal cycle of precipitation. Nevertheless, estimation of realistic spatiotemporal precipitation patterns is crucial for the climate community (e.g., for impact modeling). This study reviews discussions in literature, available observational findings, and simulation results with the regional climate model (RCM) COSMO-CLM. Our COSMO-CLM simulations indicate that the model is not able to recover the nighttime’s precipitation behavior with currently typical horizontal RCM grid-spacings (e.g., 20 or 50 km), but it can do so with convection-permitting grid-spacing (~3 km) which sufficiently resolves the relevant orographic thermal wind together with the moist monsoonal flow characteristics in the area.


Precipitation Diurnal cycle Convection permitting simulation 


  1. Albrecht RI, Goodman SJ, Buechler DE, Blakeslee RJ, Christian HJ, Albrecht RI, Goodman SJ, Buechler DE, Blakeslee RJ, Christian HJ (2016) Where are the lightning hotspots on Earth? Bull Am Meteorol Soc 97(11):2051–2068. Scholar
  2. Asharaf S, Ahrens B (2015) Indian summer monsoon rainfall feedback processes in climate change scenarios. J Clim 28(13):5414–5429. Scholar
  3. Barros AP, Lang TJ (2003) Monitoring the monsoon in the Himalayas: observations in central Nepal, June 2001. Mon Weather Rev 131(7):1408–1427CrossRefGoogle Scholar
  4. Barros AP, Joshi M, Putkonen J, Burbank DW (2000) A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys Res Lett 27:3683–3686. Scholar
  5. Barros AP, Kim G, Williams E, Nesbitt SW (2004) Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci 4:29–51. Scholar
  6. Bechtold P, Chaboureau JP, Beljaars A, Betts AK, Köhler M, Miller M, Redelsperger J-L (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J Roy Meteorol Soc 130(604):3119–3137. Scholar
  7. Bhatt BC, Nakamura K (2006) A climatological-dynamical analysis associated with precipitation around the southern part of the Himalayas. J Geophys Res 111:D02115. Scholar
  8. Brisson E, Van Weverberg K, Demuzere M, Devis A, Saeed S, Stengel M, van Lipzig NPM (2016) How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics? Clim Dyn 47(9–10):3043–3061. Scholar
  9. Brisson E, Brendel C, Herzog S, Ahrens B (2018) Lagrangian evaluation of convective shower characteristics in a convection permitting model. Meteorol Zeitschrift 27(1):59–66. Scholar
  10. Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res 104(D6):6377–6402. Scholar
  11. Dobler A, Ahrens B (2008) Precipitation by a regional climate model and bias correction in Europe and South-Asia. Meteorol Zeitschrift 17(4):499–509. Scholar
  12. Dobler A, Ahrens B (2011) Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM. J Geophys Res 116:D24104. Scholar
  13. Egger J, Bajrachaya S, Egger U, Heinrich R, Reuder J, Shayka P, Wendt H, Wirth V (2000) Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: observations. Mon Weather Rev 128(4):1106–1122.<1106:DWITHK>2.0.CO;2CrossRefGoogle Scholar
  14. Fuhrer O, Chadha T, Hoefler T, Kwasniewski G, Lapillonne X, Leutwyler D, Luthi D, Osuna C, Schär C, Schulthess TC, Vogt H (2018) Near-global climate simulation at 1 Km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0. Geosci Model Dev 11:1665–1681CrossRefGoogle Scholar
  15. Geerts B et al (2017) The 2015 plains elevated convection at night field project. Bull Am Meteorol Soc 98:67–786CrossRefGoogle Scholar
  16. Houze RA Jr (2012) Orographic effects on precipitating clouds. Rev Geophys 50(1):1–47. Scholar
  17. Houze RA, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the tropical rainfall measuring mission satellite. Rev Geophys 53(3):994–1021. Scholar
  18. Joyce R, Janowiak J, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503.<0487:CAMTPG>2.0.CO;2CrossRefGoogle Scholar
  19. Jury MR (2016) Large-scale features of Africa’s diurnal climate. Phys Geogr 37(2):1–12. Scholar
  20. Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98(1):79–93. Scholar
  21. Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21(11):2680–2696. Scholar
  22. Kraus EB (1963) The diurnal precipitation change over the sea. J Atmos Sci 20:551–556CrossRefGoogle Scholar
  23. Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher P, Christensen JH, Gobiet A, Saeed F, Hagemann S, Jacob D (2013) Downscaled climate change projections with uncertainty assessment over India using high resolution multi model approach. Sci Total Environ 468:18–30. Scholar
  24. Lucas-Picher P, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire A, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12:849–868. Scholar
  25. Maddox RA (1980) Mesoscale convective complexes. Bull Am Meteorol Soc 61(11):1374–1387CrossRefGoogle Scholar
  26. Meier T (2017) Diurnal cycle of precipitation in the Himalayan foothills. MSc thesis, Goethe University Frankfurt am MainGoogle Scholar
  27. Pfeifroth U, Trentmann J, Fink AH, Ahrens B (2015) Evaluating satellite-based diurnal cycles of precipitation in the African tropics. J Appl Meteorol Climatol 55(1):23–39. Scholar
  28. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361. Scholar
  29. Rasmussen KL, Houze RA Jr (2012) A flash-flooding storm at the steep edge of high terrain – disaster in the Himalayas. Bull Am Meteorol Soc 93(11):1713–1724. Scholar
  30. Romatschke U, Houze RA Jr (2010) Extreme summer convection in South America. J Clim 23(14):3761–3791. Scholar
  31. Romatschke U, Houze RA Jr (2011) Characteristics of precipitating convective systems in the South Asian monsoon. J Hydrometeorol 12:3–26. Scholar
  32. Romatschke U, Medina S, Houze RA Jr (2010) Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Clim 23:419–439. Scholar
  33. Rüthrich F, Thies B, Reudenbach C, Bendix J (2013) Cloud detection and analysis on the Tibetan Plateau using Meteosat and Cloudsat. J Geophys Res 118(17):10082–10099. Scholar
  34. Sahany S, Venugopal V, Nanjundiah RS (2010) Diurnal-scale signatures of monsoon rainfall over the Indian Region from TRMM satellite observations. J Geophys Res 115:D02103. Scholar
  35. Sen Roy S (2008) Spatial variations in the diurnal patterns of winter precipitation in India. Theor Appl Climatol 96:347–356. Scholar
  36. Simmons AJ, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35Google Scholar
  37. Thiery W, Davin EL, Seneviratne SI, Bedka K, Lhermitte S, van Lipzig NPM (2016) Hazardous thunderstorm intensification over Lake Victoria. Nat Commun 7:12786. Scholar
  38. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  39. Trachte K, Bendix J (2012) Katabatic flows and their relation to the formation of convective clouds-idealized case studies. J Appl Meteorol Climatol 51(8):1531–1546. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Atmospheric and Environmental SciencesGoethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations