Projected Climate Change in the Himalayas during the Twenty-First Century

  • Imtiaz RangwalaEmail author
  • Elisa Palazzi
  • James R. Miller


In this chapter we synthesize our current understanding of projected climate change in the greater Himalayan region during the twenty-first century. This understanding has been constrained by the sparsity of climate observations and relatively greater limitations of our current modeling framework to represent the complex topographical influence of this vast high elevation region. Here, we examine studies that have analyzed global and regional climate model experiments for the greater Himalayan region to assess and quantify (a) future increases in temperature and how this warming trend varies with elevation, (b) climate feedbacks that amplify the warming in these high mountain regions, (c) changes in large-scale circulation that transport moisture and energy into the region, and (d) the implications from all of the above on the nature of precipitation, i.e., phase, amount and extremes, and the fate of its cryosphere. Wherever plausible, we compare these model projections with observations from recent decades to better constrain, as well as further improve, our understanding of the perceived hydroclimatic changes in this region during the twenty-first century.



IR acknowledges support from the Western Water Assessment and Cooperative Institute for Research in Environmental Sciences at the University of Colorado, Boulder. JRM acknowledges support from the New Jersey Agricultural Experiment Station and the USDA-National Institute for Food and Agriculture, Hatch project number NJ32103.


  1. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci Discuss 8(1):47–61CrossRefGoogle Scholar
  2. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309CrossRefGoogle Scholar
  3. Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30(4):535–548Google Scholar
  4. Bradley RS, Keimig FT, Diaz HF, Hardy DR (2009) Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophys Res Lett 36(17)Google Scholar
  5. Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314CrossRefGoogle Scholar
  6. Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32(2):203–213CrossRefGoogle Scholar
  7. Chen F, Huang W, Jin L, Chen J, Wang J (2011) Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci China Earth Sci 54(12):1812–1821CrossRefGoogle Scholar
  8. Christensen JH, Kanikicharla KK, Marshall G, Turner J (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  9. Filippi L, Palazzi E, von Hardenberg J, Provenzale A (2014) Multidecadal variations in the relationship between the NAO and winter precipitation in the Hindu Kush–Karakoram. J Clim 27(20):7890–7902CrossRefGoogle Scholar
  10. Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the Upper Indus Basin. J Clim 19(17):4276–4293CrossRefGoogle Scholar
  11. Ghatak D, Sinsky E, Miller J (2014) Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia. Environ Res Lett 9(11):114008CrossRefGoogle Scholar
  12. Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296CrossRefGoogle Scholar
  13. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res Atmos 102(D6):6831–6864CrossRefGoogle Scholar
  14. Hasson S, Pascale S, Lucarini V, Böhner J (2016) Seasonal cycle of precipitation over major river basins in South and Southeast Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos Res 180:42–63CrossRefGoogle Scholar
  15. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107CrossRefGoogle Scholar
  16. Hazeleger W, Wang X, Severijns C, Ştefănescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, Van den Hurk B, Van Noije T (2012) EC-Earth V2. 2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629CrossRefGoogle Scholar
  17. Hewitt K (2007) Tributary glacier surges: an exceptional concentration at Panmah glacier, Karakoram Himalaya. J Glaciol 53(181):181–188CrossRefGoogle Scholar
  18. Houze RA Jr, Rasmussen KL, Medina S, Brodzik SR, Romatschke U (2011) Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull Am Meteorol Soc 92(3):291–298CrossRefGoogle Scholar
  19. Huang A, Zhou Y, Zhang Y, Huang D, Zhao Y, Wu H (2014) Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. J Clim 27(17):6627–6646CrossRefGoogle Scholar
  20. Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101CrossRefGoogle Scholar
  21. Kattel DB, Yao T (2013) Recent temperature trends at mountain stations on the southern slope of the Central Himalayas. J Earth Syst Sci 122(1):215–227CrossRefGoogle Scholar
  22. Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IF, Goswami P, Zhou T (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res Atmos 118(8):3053–3065CrossRefGoogle Scholar
  23. Kothawale DR, Munot AA, Kumar KK (2010) Surface air temperature variability over India during 1901–2007, and its association with ENSO. Clim Res 42(2):89–104CrossRefGoogle Scholar
  24. Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW (2017) Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549:257–260CrossRefGoogle Scholar
  25. Krishnamurti TN, Kumar V, Simon A, Thomas A, Bhardwaj A, Das S, Senroy S, Bhowmik SR (2017) March of buoyancy elements during extreme rainfall over India. Clim Dyn 48(5–6):1931–1951CrossRefGoogle Scholar
  26. Kulkarni A, Patwardhan S, Kumar KK, Ashok K, Krishnan R (2013) Projected climate change in the Hindu Kush–Himalayan region by using the high-resolution regional climate model PRECIS. Mt Res Dev 33(2):142–151CrossRefGoogle Scholar
  27. Kumar A, Houze RA Jr, Rasmussen KL, Peters-Lidard C (2014) Simulation of a flash flooding storm at the steep edge of the Himalayas. J Hydrometeorol 15(1):212–228CrossRefGoogle Scholar
  28. Lau WK, Kim MK, Kim KM, Lee WS (2010) Enhanced surface warming and accelerated snowmelt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ Res Lett 5(2):025204CrossRefGoogle Scholar
  29. Li S, Lü S, Gao Y, Ao Y (2015) The change of climate and terrestrial carbon cycle over Tibetan Plateau in CMIP5 models. Int J Climatol 35(14):4359–4369CrossRefGoogle Scholar
  30. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742CrossRefGoogle Scholar
  31. Liu X, Cheng Z, Yan L, Yin ZY (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68(3):164–174CrossRefGoogle Scholar
  32. Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J Clim 27(5):1910–1927CrossRefGoogle Scholar
  33. Minder JR, Letcher TW, Skiles SM (2016) An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback. J Geophys Res Atmos 121(15):9069–9088CrossRefGoogle Scholar
  34. Ming J, Wang Y, Du Z, Zhang T, Guo W, Xiao C, Xu X, Ding M, Zhang D, Yang W (2015) Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century. PloS one 10(6):e0126235CrossRefGoogle Scholar
  35. Naud CM, Chen Y, Rangwala I, Miller JR (2013) Sensitivity of downward longwave surface radiation to moisture and cloud changes in a high-elevation region. J Geophys Res Atmos 118(17):10072–10081CrossRefGoogle Scholar
  36. Norris J, Carvalho LMV, Jones C, Cannon F (2015) WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. J Geophys Res Atmos 120:3114–3138CrossRefGoogle Scholar
  37. Ohmura A (2012) Enhanced temperature variability in high-altitude climate change. Theor Appl Climatol 110(4):499–508CrossRefGoogle Scholar
  38. Palazzi E, Hardenberg JV, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos 118(1):85–100CrossRefGoogle Scholar
  39. Palazzi E, von Hardenberg J, Terzago S, Provenzale A (2015) Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim Dyn 45(1–2):21–45CrossRefGoogle Scholar
  40. Palazzi E, Filippi L, von Hardenberg J (2017) Insights into elevation-dependent warming in the Tibetan plateau-Himalayas from CMIP5 model simulations. Clim Dyn 48(11–12):3991–4008CrossRefGoogle Scholar
  41. Panday PK, Thibeault J, Frey KE (2015) Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: an analysis of CMIP3 and CMIP5 simulations and projections. Int J Climatol 35(10):3058–3077CrossRefGoogle Scholar
  42. Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35(14)Google Scholar
  43. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430CrossRefGoogle Scholar
  44. Philipona R, Dürr B, Ohmura A, Ruckstuhl C (2005) Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys Res Lett 32(19)CrossRefGoogle Scholar
  45. Priya P, Krishnan R, Mujumdar M, Houze RA (2017) Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation. Clim Dyn 49(7–8):2351–2364CrossRefGoogle Scholar
  46. Pu Z, Xu L, Salomonson VV (2007) MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys Res Lett 34(6)Google Scholar
  47. Qin J, Yang K, Liang S, Guo X (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Chang 97(1):321–327CrossRefGoogle Scholar
  48. Qiu J (2008) The third pole climate change is coming fast and furious to the Tibetan plateau. Nature 454:393–396CrossRefGoogle Scholar
  49. Qu X, Hall A (2007) What controls the strength of snow-albedo feedback? J Clim 20(15):3971–3981CrossRefGoogle Scholar
  50. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227CrossRefGoogle Scholar
  51. Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Chang 114(3–4):527–547CrossRefGoogle Scholar
  52. Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36(6)Google Scholar
  53. Rangwala I, Miller JR, Russell GL, Xu M (2010) Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Clim Dyn 34(6):859–872CrossRefGoogle Scholar
  54. Rangwala I, Sinsky E, Miller JR (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ Res Lett 8(2):024040CrossRefGoogle Scholar
  55. Rangwala I, Pepin NC, Vuille M, Miller J (2015) Influence of climate variability and large-scale circulation on the mountain cryosphere. In: The high-mountain cryosphere: environmental changes and human risks. Cambridge University Press, CambridgeGoogle Scholar
  56. Rangwala I, Sinsky E, Miller JR (2016) Variability in projected elevation dependent warming in boreal midlatitude winter in CMIP5 climate models and its potential drivers. Clim Dyn 46(7–8):2115–2122CrossRefGoogle Scholar
  57. Rasmussen KL, Hill AJ, Toma VE, Zuluaga MD, Webster PJ, Houze RA (2015) Multiscale analysis of three consecutive years of anomalous flooding in Pakistan. Q J R Meteorol Soc 141(689):1259–1276CrossRefGoogle Scholar
  58. Rikiishi K, Nakasato H (2006) Height dependence of the tendency for reduction in seasonal snow cover in the Himalaya and the Tibetan Plateau region, 1966–2001. Ann Glaciol 43(1):369–377CrossRefGoogle Scholar
  59. Ruckstuhl C, Philipona R, Morland J, Ohmura A (2007) Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J Geophys Res Atmos 112(D3)Google Scholar
  60. Sanjay J, Krishnan R, Shrestha AB, Rajbhandari R, Ren GY (2017) Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Adv Clim Chang Res 8(3):185–198CrossRefGoogle Scholar
  61. Schild A (2008) ICIMOD’s position on climate change and mountain systems: the case of the Hindu Kush–Himalayas. Mt Res Dev 28(3):328–331CrossRefGoogle Scholar
  62. Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Chang 124:62–78CrossRefGoogle Scholar
  63. Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12(9):2775–2786CrossRefGoogle Scholar
  64. Sperber KR, Annamalai H (2014) The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Clim Dyn 43(12):3219–3244CrossRefGoogle Scholar
  65. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41(9–10):2711–2744CrossRefGoogle Scholar
  66. Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central south- west Asia. Part 1: observations. Theor Appl Climatol 86:147–160CrossRefGoogle Scholar
  67. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A Math Phys Eng Sci 365(1857):2053–2075CrossRefGoogle Scholar
  68. Terzago S, von Hardenberg J, Palazzi E, Provenzale A (2014) Snowpack changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 global climate models. J Hydrometeorol 15(6):2293–2313CrossRefGoogle Scholar
  69. Thackeray CW, Fletcher CG (2016) Snow albedo feedback: current knowledge, importance, outstanding issues and future directions. Prog Phys Geogr 40(3):392–408CrossRefGoogle Scholar
  70. Thompson DW, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293(5527):85–89CrossRefGoogle Scholar
  71. Wang Q, Fan X, Wang M (2014) Recent warming amplification over high elevation regions across the globe. Clim Dyn 43(1–2):87–101CrossRefGoogle Scholar
  72. Wang Q, Fan X, Wang M (2016) Evidence of high-elevation amplification versus Arctic amplification. Sci Rep 6:19219Google Scholar
  73. Wu J, Xu Y, Gao XJ (2017) Projected changes in mean and extreme climates over Hindu Kush Himalayan region by 21 CMIP5 models. Adv Clim Chang Res 8:176–184CrossRefGoogle Scholar
  74. Xu BQ, Wang M, Joswiak DR, Cao JJ, Yao TD, Wu GJ, Yang W, Zhao HB (2009) Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J Geophys Res Atmos 114(D17):D17209CrossRefGoogle Scholar
  75. Yadav RK, Rupa Kumar K, Rajeevan M (2009) Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. J Geophys Res 114:D12112. Scholar
  76. Yan L, Liu X (2014) Has climatic warming over the Tibetan Plateau paused or continued in recent years. J Earth Ocean Atmos Sci 1:13–28Google Scholar
  77. Yan L, Liu Z, Chen G, Kutzbach JE, Liu X (2016) Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments. Clim Chang 135(3–4):509–519CrossRefGoogle Scholar
  78. Yang T, Hao X, Shao Q, Xu CY, Zhao C, Chen X, Wang W (2012) Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Glob Planet Chang 80:1–13CrossRefGoogle Scholar
  79. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2(9):663–667CrossRefGoogle Scholar
  80. You Q, Kang S, Aguilar E, Yan Y (2008) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res Atmos 113(D7)Google Scholar
  81. Zhan YJ, Ren GY, Shrestha AB, Rajbhandari R, Ren YY, Sanjay J, Xu Y, Sun XB, You QL, Wang S (2017) Changes in extreme precipitation events over the Hindu Kush Himalayan region during 1961–2012. Adv Clim Chang Res 8(3):166–175CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Imtiaz Rangwala
    • 1
    • 2
    Email author
  • Elisa Palazzi
    • 3
  • James R. Miller
    • 4
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Physical Sciences Division, NOAABoulderUSA
  3. 3.Institute of Atmospheric Sciences and Climate (ISAC-CNR)TorinoItaly
  4. 4.Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations