Advertisement

Orbital Controls and High-Resolution Cyclostratigraphy of Late Jurassic–Early Cretaceous in the Neuquén Basin

  • Diego A. KietzmannEmail author
  • María Paula Iglesia Llanos
  • Melisa Kohan Martínez
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Detailed cyclostratigraphic analyses have been made from seven Tithonian–Hauterivian sections of the Vaca Muerta and Agrio Formations, exposed in southern Mendoza area of the Neuquén Basin. Both lithostratigraphic units are characterized by decimeter-scale rhythmic alternations of marlstones and limestones, showing a well-ordered hierarchy of cycles, including elementary cycles, bundles, and superbundles. According to biostratigraphic data, elementary cycles have a periodicity of ~18–21 ky, which correlates with the precessional cycle of the Earth’s axis. Spectral analysis based on time series of elementary cycle thicknesses allowed us to identify frequencies of ~400 ky, and ~90–120 ky, which we interpret as the modulation of the precessional cycle by the Earth’s orbital eccentricity. A third band frequency of ~40 ky was also identified that can be assigned to the obliquity cycle. Cyclostratigraphy enabled the construction of almost continuous floating astronomical time scale for the Tithonian–Hauterivian, for which a minimum duration of 5.67 myr for the Tithonian, 5.27 myr for the Berriasian, >3.45 myr for the Valanginian, and 5.96 myr for the Hauterivian have been assessed. Additionally, the likely transference mechanisms of the orbital signal to the sedimentary record are analyzed, proposing the coexistence of carbonate exportation and dilution as the dominant mechanisms.

Keywords

Cyclostratigraphy Astronomical time scale Jurassic–Cretaceous Neuquén basin 

Notes

Acknowledgements

We are especially grateful to A. C. Riccardi (Universidad Nacional de La Plata y Museo, Argentina) and H. A. Leanza (Museo de Ciencias Naturales Bernandino Rivadavía, Argentina) for the helpful discussions regarding the biostratigraphy of the Neuquén Basin. We thank Sebastián Paulin and Franco Palazzolo for the help in the fieldwork. This research has been done under the framework of the PICT-2015-0206 and PICT-2016-3762 projects supported by Agencia Nacional de Promoción Científica y Tecnológica.

References

  1. Aguirre-Urreta MB, Concheyro A, Lorenzo M et al (1999) Advances in the biostratigraphy of the Agrio Formation (Lower Cretaceous) of the Neuquén Basin, Argentina: ammonites, palynomorphs, and calcareous nannofossils. Palaeogeogr Palaeocl 150:33–47CrossRefGoogle Scholar
  2. Aguirre-Urreta MB, Rawson PF, Concheyro GA et al (2005) Lower Cretaceous biostratigraphy of the Neuquén Basin. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 57–81Google Scholar
  3. Aguirre-Urreta B, Lazo DG, Griffin M et al (2011) Megainvertebrados del Cretácico y su importancia bioestratigráfica. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 465–488Google Scholar
  4. Algeo TJ, Wilkinson BH (1988) Periodicity ofmesoscale Phanerozoic sedimentary cycles and the roleof Milankovitch orbital modulation. J Geol 96:313–322CrossRefGoogle Scholar
  5. Arthur MA, Dean WE, Stow DAV (1984) Models for the deposition of Mesozoic fine-grained organic-carbon-rich sediment in the deep sea. In: Stow DAV, Piper DJW (eds) Fine-grained sediments: deep-water processes and facies. The Geological Society, London, SP 15, pp 527–560Google Scholar
  6. Arthur MA, Dean WE, Pollastro R et al (1985) A comparative geochemical study of two transgressive pelagic limestone units, Cretaceous western interior basin, U.S. In: Pratt LM, Kauffman EG, Zelt FB (eds) Fine-grained deposits and biofacies of the Cretaceous western interior seaway: evidence of cyclic sedimentary processes. Soc Econ Paleontol Mineral, Field Trip Guidebook 4, pp 16–27Google Scholar
  7. Bádenas B, Aurell M, Rodríguez-Tovar FJ, Pardo-Igúzquiza E (2003) Sequences stratigraphy and bedding rhythms of an outer ramp limestones succession (Late Kimmeridgian, Northeast Spain). Sediment Geol 161:153–174CrossRefGoogle Scholar
  8. Ballent SC, Ronchi DI, Angelozzi GN (2004) Microfósiles calcáreos tithonianos (Jurásico superior) en el sector oriental de la cuenca Neuquina, Argentina. Ameghiniana 41:13–24Google Scholar
  9. Ballent S, Concheyro A, Náñez C et al (2011) Microfósiles mesozoicos y cenozoicos. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 489–528Google Scholar
  10. Berger WH (2013) On the Milankovitch sensitivity of the Quaternary deep-sea record. Clim Past 9:2003–2011CrossRefGoogle Scholar
  11. Berger A, Loutre MF (1994) Astronomical forcing through geological time. In: de Boer PL, Smith DG (eds) Orbital Forcing and cyclic sequences. IAS, SP 19, pp 15–24Google Scholar
  12. Bown P, Concheyro A (2004) Lower Cretaceous calcareous nannoplankton from the Neuquén Basin, Argentina. Mar Micropal 52:51–84CrossRefGoogle Scholar
  13. Burgess PM, Wright VP, Emery D (2001) Numerical forward modelling of peritidal carbonate parasequence development: implications for outcrop interpretation. Basin Res 13:1–16CrossRefGoogle Scholar
  14. Carozzi AV, Bercowski F, Rodriguez M et al (1981) Estudio de microfacies de la Formación Chachao (Valanginiano), Provincia de Mendoza. In: Abstracts of the 8 Congreso Geológico Argentino, San Luis, 20–26 Sept 1981Google Scholar
  15. Catalano JP, Scasso RS, Kietzmann DA et al (2018) Carbonate sedimentology and diagenesis of Vaca Muerta Formation in Puerta Curaco, Neuquén Basin. In: Abstracts of the 10° Congreso de Exploración y Desarrollo de Hidrocarburos, Mendoza, 7–9 Nov 2018Google Scholar
  16. Concheyro A, Palma RM, Lescano M et al (2006) Nanofósiles calcáreos en los episodios de productividad y dilución de la Formación Vaca Muerta. In: Abstracts of the 9 Congreso Argentino de Paleontología y Bioestratigrafía, Córdoba, 18–22 Sept 2006Google Scholar
  17. Doyle P, Poire DG, Spalletti LA et al (2005) Relative oxygenation of the Tithonian–Valanginian Vaca Muerta–Chachao formations of the Mendoza Shelf, Neuquén Basin, Argentina. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 185–206CrossRefGoogle Scholar
  18. Drummond CN, Wilkinson BH (1993) Carbonatecycle stacking patterns and hierarchies of orbitallyforced eustatic sea-level change. J Sed Petrol 63:369–377Google Scholar
  19. Einsele G (1982) Limestone-Marl cycles (periodicities): diagnosis, significance, causes—a review. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin, pp 8–53CrossRefGoogle Scholar
  20. Einsele G, Ricken W (1991) Limestone-Marl alternation—an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, Heidelberg, New York, pp 23–47Google Scholar
  21. Eppinger KJ, Rosenfeld U (1996) Western margin and provenance of sediments of the Neuquén Basin (Argentina) in the late jurassic and early cretaceous. Tectonophysics 259:229–244CrossRefGoogle Scholar
  22. Fischer AG (1982) Long-term climatic oscillations recorded in stratigraphy. Geophysics Study Committee, National Research Council, Climate in Earth History. National Academy Press, Washington DC, pp 97–104Google Scholar
  23. Fischer AG, D’Argenio B, Premoli Silva I, Weissert H, Ferreri V (2004) Cyclostratigraphic approach to earth’s history: an introduction. In: D’Argenio B, Fischer AG, Premoli Silva I, Weissert H, Ferreri V (eds) Cyclostratigraphy: Approaches and case histories. Soc Econ Paleontol Mineral, SP 81, pp 5–16Google Scholar
  24. Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102:535–562CrossRefGoogle Scholar
  25. Gutiérrez Pleimling A, Olea G, Suárez M et al (2011) El Miembro Chorreado de la Formación Huitrín (Cretácico Temprano). In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 175–180Google Scholar
  26. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, OxfordGoogle Scholar
  27. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electr 4(1):1–9Google Scholar
  28. Hinnov L, Hilgen F (2012) Cyclostratigraphy and astrochronology. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale. Elsevier, Oxford, pp 63–84CrossRefGoogle Scholar
  29. Huang C, Ogg JG, Gradstein FM (1993) A quantitative study of Lower Cretaceous cyclic sequences from the Atlantic Ocean and the Vocotian Basin (SE France). Paleoceanography 8(2):275–291CrossRefGoogle Scholar
  30. Huang C, Hesselbo SP, Hinnov L (2010) Astrochronology of the late Jurassic Kimmeridge Clay (Dorset, England) and implications for Earth system processes. Earth Planet Sci Lett 289:242–255CrossRefGoogle Scholar
  31. Iglesia Llanos MP, Kietzmann DA, Kohan Martínez M et al (2017) Magnetostratigraphy of the Upper JurassiceLower Cretaceous from Argentina: implications for the J-K boundary in the Neuquén Basin. Cretac Res 70:189–538CrossRefGoogle Scholar
  32. Ivanova DK, Kietzmann DA (2017) Calcareous dinoflagellate cysts from the Tithonian - Valanginian Vaca Muerta Formation in the southern Mendoza area of the Neuquén Basin, Argentina. J S Am Earth Sci 77:150–169CrossRefGoogle Scholar
  33. Kemp DB, Van Manen SM, Pollitt DA et al (2016) Investigating the preservation of orbital forcing in peritidal carbonates. Sedimentology 63:1701–1718CrossRefGoogle Scholar
  34. Kietzmann DA (2017) Chitinoidellids from the early Tithonian - early Valanginian Vaca Muerta Formation in the Northern Neuquén Basin, Argentina. J S Am Earth Sci 76:152–164CrossRefGoogle Scholar
  35. Kietzmann DA, Blau J, Fernández DE, Palma RM (2010) Crustacean microcoprolites from the upper jurassic––lower cretaceous of the Neuquén Basin, Argentina: systematics and biostratigraphic implications. Acta Palaeontol Pol 55(2):277–284CrossRefGoogle Scholar
  36. Kietzmann DA, Palma RM (2009) Microcrinoideos saccocómidos en el Tithoniano de la Cuenca Neuquina. ¿Una presencia inesperada fuera de la región del Tethys? Ameghiniana 46:695–700Google Scholar
  37. Kietzmann DA, Palma RM (2011) Las tempestitas peloidales de la Formación Vaca Muerta (Tithoniano-Valanginiano) en el sector surmendocino de la Cuenca Neuquina. La Am J Sedimentology Basin Anal 18:121–149Google Scholar
  38. Kietzmann DA, Palma RM (2014) Early Cretaceous crustacean microcoprolites from Sierra de la Cara Cura, Neuquén Basin, Argentina: Taphonomy, environmental distribution, and stratigraphic correlation. Cret Res 49:214–228CrossRefGoogle Scholar
  39. Kietzmann DA, Paulin SM (2019) Cyclostratigraphy of an upper Valanginian – lower Hauterivian mixed siliciclastic-carbonate ramp succession (Pilmatué Member of the Agrio Formation), Loma La Torre section, northern Neuquén Basin, Argentina. Cret Res 98:26–46CrossRefGoogle Scholar
  40. Kietzmann DA, Palma RM, Bressan GS (2008) Facies y microfacies de la rampa tithoniana-berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la sección del arroyo Loncoche – Malargüe, provincia de Mendoza. Rev Asoc Geol Argent 63:696–713Google Scholar
  41. Kietzmann DA, Martín-Chivelet J, Palma RM et al (2011) Evidence of precessional and eccentricity orbital cycles in a Tithonian source rock: the mid-outer carbonate ramp of the Vaca Muerta Formation, Northern Neuquén Basin, Argentina. AAPG Bull 95:1459–1474CrossRefGoogle Scholar
  42. Kietzmann DA, Palma RM, Riccardi AC et al (2014) Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta Formation): a misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sediment Geol 302:64–86CrossRefGoogle Scholar
  43. Kietzmann DA, Palma RM, Iglesia Llanos MP (2015) Cyclostratigraphy of an orbitally-driven Tithonian-Valanginian carbonate ramp succession, Southern Mendoza, Argentina: implications for the Jurassic-Cretaceous boundary in the Neuquén Basin. Sediment Geol 315:29–46CrossRefGoogle Scholar
  44. Kietzmann DA, Ambrosio A, Suriano J et al (2016) The Vaca Muerta-Quintuco system (Tithonian–Valanginian) in the Neuquén Basin, Argentina: a view from the outcrops in the Chos Malal fold and thrust belt. AAPG Bull 100:743–771CrossRefGoogle Scholar
  45. Kietzmann DA, Iglesia Llanos MP, Kohan Martinez M (2018a) Astronomical calibration of the Tithonian-Berriasian in the Neuquén Basin, Argentina: a contribution from the Southern Hemisphere to the Geologic Time Scale. In: Montenari M (ed) Cyclostratigraphy and astrochronology. Elsevier, Stratigraphy & Timescales 3, pp 327–355Google Scholar
  46. Kietzmann DA, Iglesia Llanos MP, Ivanova DKMA et al (2018b) Toward a multidisciplinary chronostratigraphic calibration of the Jurassic-Cretaceous transition in the Neuquén Basin. Rev Asoc Geol Argent 75(2):175–187Google Scholar
  47. Kohan Martínez M, Kietzmann DA, Iglesia Llanos MP et al (2018) Magnetostratigraphy and cyclostratigraphy of the Tithonian interval from the Vaca Muerta Formation, southern Neuquén Basin, Argentina. J S Am Earth Sci 85:209–228CrossRefGoogle Scholar
  48. Leanza HA, Hugo CA (1977) Sucesión de amonites y edad de la Formación Vaca Muerta y sincrónicas entre los Paralelos 35º y 40º l.s. Cuenca Neuquina-Mendocina: Rev Asoc Geol Argent 32:248–264Google Scholar
  49. Legarreta L, Gulisano CA (1989) Análisis estratigráfico de la Cuenca Neuquina (Triásico Superior-Terciario Inferior). In: Chebli GA, Spalletti LA (eds) Cuencas Sedimentarias Argentinas. Universidad de Tucumán, Serie Correlación Geológica, vol 6, pp 221–243Google Scholar
  50. Legarreta L, Uliana MA (1991) Jurassic–Cretaceous Marine Oscillations and Geometry of Back Arc Basin, Central Argentina Andes. In: McDonald DIM (ed) Sea level changes at active plate margins: process and product. IAS, SP 12, pp 429–450Google Scholar
  51. Legarreta L, Uliana MA (1996) The Jurassic succession in west central Argentina: stratal patterns, sequences, and paleogeographic evolution. Palaeogeogr Palaeocl 120:303–330CrossRefGoogle Scholar
  52. Legarreta L, Gulisano C, Uliana M (1993) Las secuencias sedimentarias jurásico-cretácicas. In: Ramos VA (ed) Geología y Recursos Naturales de la Provincia de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 87–114Google Scholar
  53. Lescano M, Concheyro A (2014) Nanocónidos del Grupo Mendoza (Cretácico Inferior) en la Provincia del Neuquén, República Argentina: Taxonomía, Cronoestratigrafía e Implicancias Paleogeográficas. Ameghiniana 51:466–499CrossRefGoogle Scholar
  54. Martínez M, Deconick J-F, Pellenard P et al (2013) Astrochronology of the Valanginian stage from reference sections (Vocotian Basin, France) and palaeoenvironmental implications for the Weissert event. Palaeogeogr Palaeocl 376:91–102CrossRefGoogle Scholar
  55. Martínez M, Deconick J-F, Pellenard P et al (2015) Astrochronology of the Valanginian-Hauterivian stages (Early Cretaceous): chronological relationships between the Paraná-Etendeka large igneous province and the Weissert and Faraoni events. Global Planet Change 131:158–173CrossRefGoogle Scholar
  56. Mitchum RM, Uliana M (1985) Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. In: Berg BR, Woolverton DG (eds) Seismic Stratigraphy 2. An integrated approach to hydrocarbon analysis. Tulsa, AAPG Mem 39:255–83Google Scholar
  57. Munnecke A, Samtleben C (1996) The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies 34:159–176CrossRefGoogle Scholar
  58. Ogg JG, Hinnov L (2012a) The Jurassic Period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The Geologic time scale 2012. Elsevier, Amsterdam, pp 731–792CrossRefGoogle Scholar
  59. Ogg JG, Hinnov L (2012b) The Cretaceous Period. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 793–854CrossRefGoogle Scholar
  60. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, AmsterdamGoogle Scholar
  61. Palazzolo F (2019) Cicloestratigrafía de la Formación Agrio (Valanginaiano-Hauteriviano) en la sección del arroyo Loncoche, Cuenca Neuquina surmendocina. Degree thesis, Universidad de Buenos AiresGoogle Scholar
  62. Palma RM, Martín-Chivelet J, López Gómez J et al (2008) High-resolution cyclostratigraphy analysis from a Tithonian alternating marl-limestones succession Vaca Muerta Fomation, Neuquén Basin, Mendoza, Argentina. In: Abstracts of the IGCP 506 Fifth Symposiums, Hammamet, 28–31 Mar 2008Google Scholar
  63. Pittet B, Strasser A (1998) Depositional sequences in deep-shelf environments formed through carbonate mud import from the shallow platform (late Oxfordian, German Swabian Alb and eastern Swiss Jura). Eclogae Geol Helve 91:149–169Google Scholar
  64. Premoli Silva I, Erba E, Tornaghi I (1989) Paleoenvironmental signals and changes in surface fertility in mid-Cretaceous C org-rich facies of the fucoid marls (central Italy). Geobios 11:225–236CrossRefGoogle Scholar
  65. Quattrocchio ME, Martínez MA, García VM et al (2003) Palinoestratigrafía del tithoniano-Hauteriviano del centro-oeste de la Cuenca Neuquina, Argentina. Rev Esp Micropaleont 354:51–74Google Scholar
  66. Ramos VA (2010) The tectonic regime along the Andes: present-day and Mesozoic regimes. Geol J 45:2–25CrossRefGoogle Scholar
  67. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and Foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in Sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 15–35CrossRefGoogle Scholar
  68. Riccardi AC (2008) The marine Jurassic of Argentina: a biostratigraphic framework. Episodes 31:326–335CrossRefGoogle Scholar
  69. Riccardi AC (2015) Remarks on the Tithonian-Berriasian ammonite biostratigraphy of west central Argentina. Volumina Jurassica 13:23–52Google Scholar
  70. Riccardi AC, Damborenea SE, Manceñido MO et al (2011) Megainvertebrados jurásicos y su importancia geobiológica. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 441–464Google Scholar
  71. Ricken W (1986) Diagenetic bedding: a model for Limestone–Marl alternations. Springer, BerlinGoogle Scholar
  72. Ricken W (1987) The carbonate compaction law: a new tool. Sedimentology 34:1–14CrossRefGoogle Scholar
  73. Sagasti G, Poire D (1998) Asociaciones icnológicas de la porción basal de la Formación Agrio, arroyo Loncoche, provincia de Mendoza. Rev Asoc Argentina Sediment 5:105–118Google Scholar
  74. Sagasti G (2000) Ciclos de Milankovitch en el Cretácico Inferior de la Cuenca Neuquina Surmendocina, Argentina. In: Abstracts of the 2 Congreso Latinoamericano de Sedimentología y 8 Reunión Argentina de Sedimentología, Mar del Plata, 14–17 Mar 2000Google Scholar
  75. Sagasti G (2005) Hemipelagic record of orbitally-induced dilution cycles in Lower Cretaceous sediments of the Neuquén Basin. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 231–250CrossRefGoogle Scholar
  76. Scasso RA, Alonso SM, Lanés S et al (2002) Petrología y geoquímica de una ritmita marga-caliza del Hemisferio Austral: El Miembro Los Catutos (Formación Vaca Muerta), Tithoniano medio de la Cuenca Neuquina. Rev Asoc Geol Argent 57:143–159Google Scholar
  77. Scasso RA, Alonso SM, Lanés S et al (2005) Geochemistry and petrology of a Middle Tithonian limestone-marl rhythmite in the Neuquén Basin, Argentina: depositional and burial history. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252:207–229Google Scholar
  78. Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci 28:421–426CrossRefGoogle Scholar
  79. Spalletti LA, Del Valle A, Kielbowicz A (1990) Análisis cicloestratigráfico del intervalo Hauteriviano superior-Barremiano en el área de Filo Morado, Cuenca Neuquina. In: Abstracts of the III Reunión Argentina de Sedimentología, San Juan, 20–24 May 1990Google Scholar
  80. Spalletti LA, Poiré DG, Schwarz E et al (2001) Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonate siliciclastic ramp: Neuquén Basin, Argentina. J S Am Earth Sci 14:609–624CrossRefGoogle Scholar
  81. Strasser A, Pittet B, Hillgärtner H et al (1999) Depositional sequences in shallow carbonatedominated sedimentary systems: concepts for a high-resolution analysis. Sediment Geol 128:201–221CrossRefGoogle Scholar
  82. Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In: Tankard AJ, Suárez SR, Welsink HJ (eds) Petroleum basins of South America. AAPG Memoir 62:383–402Google Scholar
  83. Weedon G (2003) Time-series analysis and cyclostratigraphy. Examining stratigraphic record of environmental cycles. Cambridge University Press, New York, p 259CrossRefGoogle Scholar
  84. Westphal H, Head MJ, Munnecke A (2000) Differential diagenesis of rhythmic limestone alternations supported by palynomorph evidence. J Sed Res 70:715–725CrossRefGoogle Scholar
  85. Westphal H, Böhm F, Bornholdt S (2004) Orbital frequencies in the sedimentary record: distorted by diagenesis? Facies 50:3–11CrossRefGoogle Scholar
  86. Westphal H, Hilgen F, Munnecke A (2010) An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth-Sci Rev 99:19–30CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Diego A. Kietzmann
    • 1
    • 2
    Email author
  • María Paula Iglesia Llanos
    • 1
    • 2
  • Melisa Kohan Martínez
    • 1
    • 2
  1. 1.Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias GeológicasUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.CONICET-Universidad de Buenos Aires, Instituto de Geociencias Básicas, Ambientales y Aplicadas de Buenos Aires (IGeBA)Buenos AiresArgentina

Personalised recommendations