Advertisement

Magnetostratigraphy of the Jurassic Through Lower Cretaceous in the Neuquén Basin

  • María Paula Iglesia LlanosEmail author
  • Diego A. Kietzmann
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The first magnetostratigraphic scales for the Jurassic through Early Cretaceous from the Southern Hemisphere have been constructed over the last decades from marine sections in the Neuquén Basin. Paleomagnetic sites were tied to ammonite zones in order to achieve well-refined ages of studied sections. Diverse field tests for the paleomagnetic stability proved the primary origin of isolated magnetizations. In the case of Upper Jurassic–Lower Cretaceous studies, magnetostratigraphic and biostratigraphic data were combined with cyclostratigraphy. Finally, polarities were tied to Andean ammonite zones and from their correlation with the standard zones, calibrated to the GTS2016 (Geomagnetic Polarity Time Scale 2016). For the Early Jurassic, a composite magnetostratigraphic scale was derived out of five sections spanning the Hettangian–Toarcian. The magnetostratigraphic scale portrays 16 reverse (Jr1–Jr16) and 16 normal (Jn1–Jn16) polarity zones that encompass at least 19 ammonite zones. A major difference between both scales rises in the Hettangian involving the Jr1–Jr3 polarity zones. For the Middle Jurassic, the resultant magnetostratigraphy obtained in the Lajas Formation outlines a dominantly reverse polarity pattern. According to the correlation with the GTS2016, the studied section is assigned to the Lower-uppermost Middle Bathonian (Chrons M41 through M39). For the Late Jurassic–Early Cretaceous, the magnetostratigraphic scale obtained in the Vaca Muerta Formation comprises Subchrons M22r.2r through M15r, spanning the V. andesensis (Lower Tithonian)–S. damesi Zones (Upper Berriasian). The use of diverse chronostratigraphic tools such as biostratigraphy, magnetostratigraphy and cyclostratigraphy, enabled to determine with unprecedented precision the position of the Jurassic–Cretaceous boundary, as well as to assess durations of ammonite zones

Keywords

Jurassic Early Cretaceous Paleomagnetism Magnetostratigraphy Ammonite zones Cyclostratigraphy Polarity zones Jurassic–Cretaceous boundary 

References

  1. Aguirre-Urreta MB, Vennari VV, Lescano M et al (2014) Bioestratigrafía y geocronología de alta resolución de la Formación Vaca Muerta, Cuenca Neuquina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, Mendoza, 3–7 Nov 2014Google Scholar
  2. Amigo JD (2016) Magnetoestratigrafía de la Formación Vaca Muerta en la sección Puerta Curaco, norte de Neuquén. Degree Thesis, Universidad de Buenos AiresGoogle Scholar
  3. Ballent S, Concheyro A, Náñez C et al (2011) Microfósiles mesozoicos y cenozoicos. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 489–528Google Scholar
  4. Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42(1):49–93CrossRefGoogle Scholar
  5. Bown P, Concheyro A (2004) Lower Cretaceous calcareous nannoplankton from the Neuquén Basin, Argentina. Mar Micropaleontol 52:51–84CrossRefGoogle Scholar
  6. Brandsaeter I, McIlroy D, Lia O et al (2005) Reservoir modelling and simulation of Lajas Formation outcrops (Argentina) to constrain tidal reservoirs of the Halten Terrace (Norway). Petrol Geosci 11:37–46CrossRefGoogle Scholar
  7. Canale N, Ponce JJ, Carmona NB, Drittanti DI, Olivera DE, Martínez MA, Bournod CN (2015) Sedimentología e Icnología de deltas fluvio-dominados afectados por descargas hiperpícnicas de la Formación Lajas (Jurásico Medio), Cuenca Neuquina, Argentina. Andean Geol 42(1)Google Scholar
  8. Damborenea SE (1987) Early Jurassic Bivalvia of Argentina Pt.1, Stratigraphical Introduction and superfamilies Nuculanacae, Arcaceae, Mytilaceae and Pinnacea. Palaeontographica A 199:23–111Google Scholar
  9. Fernández Carmona J, Riccardi AC (1999) Primer reporte de Calpionélidos calcáreos del Cretácico inferior–Berriasiano de la Provincia del Tethys en la República Argentina: Conexión Tethys-Pacífico. In: Abstracts of the 5 Simposio sobre o Cretáceo do Brasil, 29 Aug–2 Sept 1999Google Scholar
  10. Fisher RA (1953) Dispersion on a sphere. Proc R Soc London A 217:295–305CrossRefGoogle Scholar
  11. García VM, Zavala CA, Quattrocchio ME (1994) Relación entre análisis palinológico y análisis de facies. Aplicación al Grupo Cuyo (Jurásico Medio) en la Cuenca Neuquina. Rev Asoc Geol Argent 49(1–2):184–195Google Scholar
  12. García VM, Quattrocchio ME, Zavala CA et al (2006) Palinofacies, paleoambientes y paleoclima del Grupo Cuyo (Jurásico medio) en la Sierra de Chacaico, Cuenca Neuquina, Argentina. Rev Española Micropaleont 38(2–3):269–288Google Scholar
  13. González Tomassini F, Kietzmann DA, Fantín MA et al (2015) Estratigrafía y análisis de facies de la Formación Vaca Muerta en el área de El Trapial, Cuenca Neuquina, Argentina. Petrotecnia 2015/2:78–89Google Scholar
  14. Grabowski J (2011) Magnetostratigraphy of the Jurassic/Cretaceous boundary interval in the Western Tethys and its correlations with other regions: a review. Vol Jurassica 9:105–128Google Scholar
  15. Gugliotta M, Flint SS, Hodgson DM, Veiga GD (2015) Stratigraphic record of river-dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). J Sediment Res 85(3):265–284CrossRefGoogle Scholar
  16. Gulisano CA, Gutiérrez Pleimling A, Digregorio R (1984) Esquema estratigráfico de la secuencia Jurásica del oeste de la provincia de Neuquén. 9º Congreso Geológico Argentino. Actas 1:237–259Google Scholar
  17. Gulisano CA, Gutiérrez Pleimling A (1995) The Jurassic of the Neuquén Basin. b) Mendoza Province, Asociación Geológica Argentina, Series E3, Buenos Aires, pp 103Google Scholar
  18. Halls HC (1976) A least-squares method to find a remanence direction from converging remagnetization circles. Geophys J R Am Soc 45:291–304Google Scholar
  19. Heslop D, Dekkers MJ, Kruiver PP et al (2002) Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys J Int 148(1):58–64CrossRefGoogle Scholar
  20. Hoedemaeker PJ (1990) The Neocomian boundaries of the Tethyan Realm based on the distribution of ammonites. Cretaceous Res 11:331–342CrossRefGoogle Scholar
  21. Hounslow MW, Davydov VI, Klootwijk CT et al (2004) Magnetostratigraphy of the Carboniferous: a review and future prospects. Newsl Carboniferous Strat 22:35–41Google Scholar
  22. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Surv Geophys 5(1):37–82CrossRefGoogle Scholar
  23. Iglesia Llanos MP (1997) Magnetoestratigrafía y Paleomagnetismo del Jurásico Inferior marino de la Cuenca Neuquina, República Argentina. Ph.D. thesis, Universidad de Buenos AiresGoogle Scholar
  24. Iglesia Llanos MP (2009) Estudio Paleomagnético del Jurásico Marino de la Cuenca Neuquina: Correlación Magnetoestratigráfica del Jurásico Inferior y una Nueva Curva de Deriva Polar Aparente para América del Sur. Rev Asoc Geol Argent 65(2):387–399Google Scholar
  25. Iglesia Llanos MP (2012) Palaeomagnetic study of the Jurassic from Argentina: magnetostratigraphy and palaeogeography of South America. Rev Paléobiol, SP11:151–168Google Scholar
  26. Iglesia Llanos MP, Kietzmann DA, Kohan Martínez M et al (2017) Magnetostratigraphy of the Upper Jurassic-Lower Cretaceous from Argentina: implications for the J-K boundary in the Neuquén Basin. Cretaceous Res 70:189–208CrossRefGoogle Scholar
  27. Iglesia Llanos MP, Kietzmann DA, Kohan Martínez M et al (2019) Magnetostratigraphy of a Middle Jurassic delta system (Lajas Formation), Portada Covunco section, southern Neuquén Basin, Argentina. J S Am Earth Sci 94:102235CrossRefGoogle Scholar
  28. Iglesia Llanos MP, Prezzi CB (2013) The role of true polar wander on the Jurassic palaeoclimate. Int J Earth Sci 102:745–759CrossRefGoogle Scholar
  29. Iglesia Llanos MP, Riccardi AC, Singer SE (2006) Palaeomagnetic study of Lower Jurassic marine strata from the Neuquén Basin, Argentina: a new Jurassic apparent polar wander path for South America. Earth Planet Sci Lett 252(3–4):379–397CrossRefGoogle Scholar
  30. Iglesia Llanos MP, Riccardi AC (2000) The Neuquén composite section: magnetostratigraphy and biostratigraphy of the marine lower Jurassic from the Neuquén basin (Argentina). Earth Plan Sc Lett 181:443–457CrossRefGoogle Scholar
  31. Iglesia Llanos MP, Vizán H (1995) Magnetoestratigrafía y Paleomagnetismo del Pliensbaquiano y Toarciano marino de la Argentina. Geol Colombiana 20:143–146Google Scholar
  32. Ivanova DK, Kietzmann DA (2016) Calcareous dinoflagellate cysts from the Tithonian - Valanginian Vaca Muerta Formation in the southern Mendoza area of the Neuquén Basin, Argentina. In: Abstracts of the VI Simposio Argentino del Jurásico, Malargüe, 18–19 April 2016Google Scholar
  33. Ivanova DK, Kietzmann DA (2017) Calcareous dinoflagellate cysts from the Tithonian - Valanginian Vaca Muerta Formation in the southern Mendoza area of the Neuquén Basin, Argentina. J S Am Earth Sci 77:150–169CrossRefGoogle Scholar
  34. King RF (1955) Remanent magnetism of artificially deposited sediments. Mon Not R Astron Soc Geophys Suppl 7:115–134CrossRefGoogle Scholar
  35. Kent DV, Olsen PE (2008) Early Jurassic magnetostratigraphy and paleolatitudes from the Hartford continental rift basin (eastern North America): Testing for polarity bias and abrupt polar wander in association with the central Atlantic Magmatic province. J Geophys Res 113:B06105CrossRefGoogle Scholar
  36. Kent DV, Olsen PE, Witte WK (1995) Late Triassic-earliest Jurassic geomagnetic polarity sequence and paleolatitudes from drill cores in the Newark rift basin, eastern North America. J Geophys Res 100(B8):14965–14998CrossRefGoogle Scholar
  37. Kietzmann DA (2017) Chitinoidellids from the early Tithonian–early Valanginian Vaca Muerta formation in the Northern Neuquén Basin, Argentina. J S Am Earth Sci 76:152–164CrossRefGoogle Scholar
  38. Kietzmann DA, Palma RM, Bressan GS (2008) Facies y microfacies de la rampa tithoniana-berriasiana de la Cuenca Neuquina (Formación Vaca Muerta) en la sección del arroyo Loncoche – Malargüe, provincia de Mendoza. Rev Asoc Geol Argent 63(4):696–713Google Scholar
  39. Kietzmann DA, Martín-Chivelet J, Palma RM et al (2011a) Evidence of precessional and eccentricity orbital cycles in a Tithonian source rock: the mid-outer carbonate ramp of the Vaca Muerta Formation, Northern Neuquén Basin, Argentina. AAPG Bull 95(9):1459–1474CrossRefGoogle Scholar
  40. Kietzmann DA, Blau J, Riccardi AC et al (2011b) An interesting finding of chitinoidellids (Clapionellidea Bonet) in the Jurassic-Cretaceous boundary of the Neuquén Basin. In: Abstracts of the 18 Congrreso Geologico Argentino, Neuquén, 4–6 May 2011Google Scholar
  41. Kietzmann DA, Palma RM, Riccardi AC et al (2014) Sedimentology and sequence stratigraphy of a Tithonian - Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sediment Geol 302:64–86CrossRefGoogle Scholar
  42. Kietzmann DA, Palma RM, Iglesia Llanos MP (2015) Cyclostratigraphy of an orbitally-driven Tithonian-Valanginian carbonate ramp succession, Southern Mendoza, Argentina: Implications for the Jurassic-Cretaceous boundary in the Neuquén Basin. Sedediment Geol 315:29–46CrossRefGoogle Scholar
  43. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc 62:699–718CrossRefGoogle Scholar
  44. Kohan Martínez M, Kietzmann DA, Iglesia Llanos MP (2018) Magnetostratigraphy and cyclostratigraphy of the Tithonian interval from the Vaca Muerta Formation, southern Neuquén Basin, Argentina. J S Am Earth Sci 85:209–228CrossRefGoogle Scholar
  45. Kurcinka C, Dalrymple RW, Gugliotta M (2017) Facies and architecture of river dominated to tide-influenced mouth bars in the lower Lajas Formation (Jurassic), Argentina. AAPG Bull 102:885–912CrossRefGoogle Scholar
  46. Lanza R, Meloni A (2006) The Earth’s magnetism. Springer, Berlin-HeidelbergGoogle Scholar
  47. Leanza HA (1981) The Jurassic-Cretaceous boundary beds in West Central Argentina and their ammonite zones. Neues Jahrb Geol P-A 161:62–92Google Scholar
  48. Leanza HA (1996) Advances in the ammonite zonation around the Jurassic/Cretaceous boundary in the andean realm and correlation with tethys. In: Jost Wiedmann Symposium, Abstracts, T€ubingen, pp 215e219Google Scholar
  49. Legarreta L, Uliana MA (1991) Jurassic–Cretaceous Marine Oscillations and Geometry of Back Arc Basin, Central Argentina Andes. In: McDonald, DIM (ed) Sea level changes at active plate margins: Process and product. International Association of Sedimentologists, SP 12:429–450Google Scholar
  50. Lena L, López-Martínez R, Lescano M et al (2018) Cross-continental age calibration of the Jurassic/Cretaceous boundary. Solid Earth Discuss.  https://doi.org/10.5194/se-2018-57
  51. Kietzmann DA, Lescano M (2010) Nanofósiles Calcáreos de la Formación Vaca Muerta (Tithoniano inferior- Valanginiano inferior) en la región sudoccidental de la Provincia de Mendoza. In: Abstracts of the 10 Congreso Argentino de Paleontologia y Bioestratigrafía y 7 Congreso Latinoamericano de Paleontología, La Plata, 20–24 Sept 2010Google Scholar
  52. López-Martínez R, Aguirre-Urreta B, Lescano M et al (2017) Tethyan calpionellids in the Neuquén Basin (Argentine Andes), their significance in defining the Jurassic/Cretaceous boundary and pathways for Tethyan-Eastern Pacific connections. J S Am Earth Sci 78:116–125CrossRefGoogle Scholar
  53. Martínez MA (2002) Palynological zonation of the Lajas Formation (Middle Jurassic) of the Neuquén Basin, Argentina. Ameghiniana 39(2):221–240Google Scholar
  54. Martínez MA, Quattrocchio ME, Zavala CA (2002) Análisis palinofacial de la Formación Lajas (Jurásico Medio), Cuenca Neuquina, Argentina. Significado paleoambiental y paleoclimático. Rev Española Micropaleont 34(1):81–104Google Scholar
  55. McFadden PL (1990) A new fold test for palaeomagnetic studies. Geophys J Int 103:163–169CrossRefGoogle Scholar
  56. McFadden PL, McElhinny MV (1988) The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth Planet Sc Lett 87:163–189Google Scholar
  57. McFadden P, McElhinny MW (1990) Classification of the reversal test in palaeomagnetism. Geophys J Int 103:725–729CrossRefGoogle Scholar
  58. McIlroy D (2007) Palaeoenvironmental controls on the ichnology of tide-influenced facies with an example from a macrotidal tide-dominated deltaic depositional system, Lajas Formation, Neuquén Province, Argentina. Sediment–Organism Interactions: A Multifaceted Ichnology. SEPM (Society for Sedimentary Geology). Spec Publ 88:195–213Google Scholar
  59. Mena M (1994) Cirdi, Software para el cálculo de direcciones mediante el análisis de círculos máximos. Laboratorio de Paleomagnetismo D. Valencio, Universidad de Buenos AiresGoogle Scholar
  60. Merino G (2017) Magnetoestratigrafía y Sedimentología de la Formación Lajas (Jurásico Medio) en la sección Arroyo Covunco, provincia de Neuquén. Degree thesis, Universidad de Buenos AiresGoogle Scholar
  61. Michalik J, Reháková D (2011) Possible markers of the Jurassic/Cretaceous boundary in the Mediterranean Tethys: a review and state of art. Geosci Front 2(4):475–490CrossRefGoogle Scholar
  62. Ogg JG (2004) The Jurassic period. In: Gradstein F, Ogg JG, Smith A (eds) A geologic time scale. Cambridge University Press, Cambridge, pp 307–343Google Scholar
  63. Ogg JG, Hinnov LA (2012) The Jurassic Period. In: Gradstein FM, Ogg J, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 731–792CrossRefGoogle Scholar
  64. Ogg JG, Ogg GM, Gradstein FM (2016) A concise geologic time scale. Elsevier, AmsterdamGoogle Scholar
  65. Remane J (1991) The Jurassic-Cretaceous boundary: problems of definition and procedure. Cretaceous Res 12(5):447–453CrossRefGoogle Scholar
  66. Riccardi AC (1983) The Jurassic of Argentina and Chile. In: Moullade M, Naim AEM (eds) The Phanerozoic geology of the world II, The Mesozoic B:201–203Google Scholar
  67. Riccardi AC (2008) The marine Jurassic of Argentina: a biostratigraphic framework. Episodes 31:326–335CrossRefGoogle Scholar
  68. Riccardi A (2015) Remarks on the Tithonian–Berriasian ammonite biostratigraphy of west central Argentina. Vol Juras 13:23–52Google Scholar
  69. Riccardi AC, Gulisano CA (1992) Unidades limitadas por discontinuidades. Su aplicación al Jurásico Andino. Rev Asoc Geol Argent 45(3–4): 346–364Google Scholar
  70. Riccardi AC, Iglesia Llanos MP (1999) Primer hallazgo de amonites en el Triásico de la Argentina. Rev Asoc Geol Argent 54(3):298–300Google Scholar
  71. Riccardi AC, Damborenea SE, Manceñido MO et al (1991) Hettangian and Sinemurian (Lower Jurassic) biostratigraphy of Argentina. J S Am Earth Sci 4(3):159–170CrossRefGoogle Scholar
  72. Riccardi AC, Damborenea SE, Manceñido MO et al (2004) The Triassic/Jurassic boundary in the Andes of Argentina. Riv Ital Paleontol S 110:69–76Google Scholar
  73. Riccardi AC, Westermann GEG (1991) Middle Jurassic Ammonoid Fauna and Biochronology of the Argentine-Chilean Andes. Part III: Bajocian-Callovian Eurycephalitinae, Stephanocerataceae. Palaeontogr A 216:1–110Google Scholar
  74. Rochette P (1988) Inverse magnetic fabric carbonate bearing rocks. Earth Planet Sci Lett 90:229–237CrossRefGoogle Scholar
  75. Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30(3):209–226CrossRefGoogle Scholar
  76. Salazar Soto C (2012) The Jurassic-Cretaceous boundary (Tithonian–Hauterivian) in the Andean Basin of Central Chile: ammonites, bio- and sequence stratigraphy and palaeobiogeography. Ph.D. thesis, Rupecht-Karls-Universität HeildebergGoogle Scholar
  77. Spalletti L (1995) Depósitos de tormenta en un frente deltaico. Jurásico medio de la Cuenca Neuquina, República Argentina. Rev Soc Geol España 8:261–272Google Scholar
  78. Steel E, Simms AR, Steel R, Olariu C, Marzo M (2018) Hyperpycnal delivery of sand to the continental shelf: Insights from the Jurassic Lajas Formation, Neuquén Basin, Argentina. Sedimentology 65(6):2149–2170CrossRefGoogle Scholar
  79. Torsvik TH (1992) Iteractive analysis of palaeomagnetic data. NGU, TrondheimGoogle Scholar
  80. Torsvik TH, Briden JC, Smethurst MA (2000) Super-IAPD Interactive analysis of palaeomagnetic data. www.geodynamics.no/software.htm
  81. Van der Voo R, French RB (1977) Paleomagnetism of the Late Ordovician Juniata Formation and the remagnetization hypothesis. J Geophys Res 82(36):5796–5802CrossRefGoogle Scholar
  82. Vennari VV (2016) Tithonian ammonoids (Cephalopoda, Ammonoidea) from the Vaca Muerta Formation, Neuquén Basin, West-Central Argentina. Palaeontogr A 306(1–6):85–165CrossRefGoogle Scholar
  83. Vennari V, Lescano M, Naipauer M et al (2014) New constraints on the Jurassic-Cretaceous boundary in the High Andes using high-precision U-Pb data. Gondwana Res 26:374–385CrossRefGoogle Scholar
  84. Volkheimer W (1978) Descripción geológica de la Hoja 27b, Cerro Sosneado, Provincia de Mendoza. Bol Serv Geol Nac 151:1–85Google Scholar
  85. Westermann GEG (1988) Duration of Jurassic stages based on average and scaled subzones. In: Agterberg FP, Rao CN (eds) Recent advances in quantitative stratigraphic correlation. Hindustan Publishing, Delhi, pp 90–100Google Scholar
  86. Westermann GEG, Riccardi AC (1972) Middle Jurassic ammonoid fauna and biochronology of the Argentine-Chilean Andes. Part I: Hildocerataceae. Palaeontographica A 140:1–116Google Scholar
  87. Wimbledon WAP (2008) The Jurassic-Cretaceous boundary: an age-old correlative enigma. Episodes 31(4):423–428CrossRefGoogle Scholar
  88. Wimbledon WAP, Casellato CE, Reháková D et al (2011) Fixing a basal Berriasian and Jurassic/Cretaceous (J/K) boundary—is there perhaps some light at the end of the tunnel? Riv Ital Paleontol S 117:295–307Google Scholar
  89. Wimbledon WAP, Reháková D, Pszczółkowski A et al (2013) An account of the bio- and magnetostratigraphy of the Upper Tithonian—Lower Berriasian interval at Le Chouet, Drôme (SE France). Geol Carpathica 64(6):437–460CrossRefGoogle Scholar
  90. Yang Z, Moreau G, Bucher H et al (1995) Hettangian and Sinemurian magnetostratigraphy from Paris Basin. J Geophys Res 101(B4):8025–8042CrossRefGoogle Scholar
  91. Zavala CA (1993) Estratigrafía y análisis de facies de la Formación Lajas (Jurásico medio) en el sector suroccidental de la Cuenca Neuquina. Provincia del Neuquén. República Argentina. Ph.D. Thesis, Universidad del SurGoogle Scholar
  92. Zavala CA (1996a) Sequence stratigraphy in continental to marine transitions. An example from the Middle Jurassic Cuyo Group, south Neuquén Basin, Argentina. GeoRes Forum 1(2):285–293Google Scholar
  93. Zavala CA (1996b) High-resolution sequence stratigraphy in the Middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. GeoRes Forum 1(2):295–303Google Scholar
  94. Zavala C, González R (2001) Estratigrafía del Grupo Cuyo (Jurásico inferior-medio) en la Sierra de la Vaca Muerta, Cuenca Neuquina. Bol Inf Petrol 65:40–54Google Scholar
  95. Zegers TE, Dekkers MJ, Bailly S (2003) Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: role of temperature, fluids, and deformation. J Geophys Res Solid Earth 108(B7):2357CrossRefGoogle Scholar
  96. Zeiss A, Leanza HA (2010) Upper Jurassic (Tithonian) ammonites from the lithographic limestones of the Zapala region, Neuquén Basin, Argentina. Beringeria 41:23–74Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • María Paula Iglesia Llanos
    • 1
    • 2
    Email author
  • Diego A. Kietzmann
    • 1
    • 2
  1. 1.Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias GeológicasUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.CONICET—Universidad de Buenos Aires, Instituto de Geociencias Básicas, Ambientales y Aplicadas de Buenos Aires (IGeBA)Buenos AiresArgentina

Personalised recommendations