Advertisement

Environmental Controls and Facies Architecture of a Jurassic Carbonate Episode (La Manga Formation), Mendoza Province, Neuquén Basin

  • Ricardo M. PalmaEmail author
  • Graciela S. Bressan
  • Alberto C. Riccardi
  • José López-Gómez
  • Javier Martín-Chivelet
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

La Manga Formation is a vast carbonate system developed in the Neuquén Basin. The age is based in ammonite faunas, ranging from Early Callovian (Bodenbenderi-Proximum Zone) to Middle Oxfordian (Cordatum Standard Zone to Transversarium Standard Zone, and probably to the lower part of the Bifurcatus Standard Zone). A stratigraphical and sedimentological analysis, in the outcrops exposed in the south of Mendoza province, enabled the recognition of five facies associations of a carbonate ramp corresponding to (1) distal outer ramp, (2) proximal outer to distal middle ramp, (3) proximal middle ramp, (4) inner ramp deposits (shoreface, shoal, patch reef, shallow subtidal lagoon and tidal flat) and (5) paleokarstic facies. These facies correspond to homoclinal to distally steepened carbonate ramp. The facies associations are included into three third-order depositional sequences (DS-1, DS-2, DS-3) represented by transgressive and highstand systems tracts with sequence boundaries of regional character. Different controlling factors can be recognised in the deposition of this unit. The abrupt changes of facies, as well as paleokarst and epikarst discontinuity surfaces in the successions provide important evidence in terms of depositional environment and vertical evolution of the carbonate ramp. Facies patterns are variable across the outcrop area and vertically through time because of a combination of ramp morphology, siliciclastic supply, sea level changes and tectonic effects. In the southern sections, siliciclastic influx influenced the deposition of proximal middle ramp facies later overlain by scleractinian patch reefs which grew up throughout progressive stages from aggradational to progradational facies in response to climate controls and nutrient levels influence. In northern outcrops, tectonic controls affected the ramp topography and influenced the development of distal deep marine facies. Shallow subtidal and peritidal cycles indicate a combination of allocyclic and autocyclic processes controlling accommodation space and sediment accumulation.

Keywords

Callovian–Oxfordian Carbonate ramp Sea level changes Tectonic controls 

Notes

Acknowledgements

This work has been supported by different CONICET (PIP), UBA (UBACyT) and FONCyT (PICT) projects directed by R. M. Palma. We want to thank Mr. G. Herrero (Universidad Complutense de Madrid) for technical assistance and J. C. Poblete for his assistance during field work. Also, we would like to thank all the members of the Dirección de Recursos Naturales Renovables of Malargüe as well as the Researcher Group 910198 (Universidad Complutense de Madrid, Comunidad de Madrid, Spain).

References

  1. Adams RD, Grotzinger JP (1996) Lateral continuity of facies and parasequences in Middle Cambrian platform carbonates, Carrara Formation, southeastern California, USA. J Sediment Petrol 66:1079–1090Google Scholar
  2. Aigner T (1982) Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW Germany). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin, pp 180–198CrossRefGoogle Scholar
  3. Assereto RL, Kendall CG (1977) Nature, origin and classification of peritidal tepee structures and related breccias. Sedimentology 24:153–210CrossRefGoogle Scholar
  4. Bádenas B, Aurell M, Bosence D (2010) Continuity and facies heterogeneities of shallow carbonate ramp cycles (Sinemurian). Lower Jurassic, North-east Spain. Sedimentology 57:1021–1048CrossRefGoogle Scholar
  5. Bathurst RGC (1976) Carbonate sediments and their diagenesis developments in sedimentology, 12th edn. Elsevier, New York, p 658Google Scholar
  6. Baumgärtner M, Reyle M (1995) Oberjurassische Rampenentwicklung in der Region von Jabaloyas und Cerezo (Keltiberikum; Spanien). Profil 8:339–361Google Scholar
  7. Beresi MS (2003) Oxfordian sponge association from the Neuquén basin, Mendoza, west central Argentina. J S Am Earth Sci 16:105–112CrossRefGoogle Scholar
  8. Beresi MS (2007) Fossil sponges of Argentina: a review. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G. (eds) Porifera research: biodiversity, innovation and sustainability, Museu Nacional du Rio de Janeiro, Rio de Janeiro, série livros vol 28, pp 11–21Google Scholar
  9. Beresi MS, Cabaleri NG, Löser H et al (2017) Coral patch reef system and associated facies from southwestern Gondwana: paleoenvironmental evolution of the Oxfordian shallow-marine carbonate platform at Portada Covunco, Neuquén Basin, Argentina. Facies 63:22CrossRefGoogle Scholar
  10. Bressan GS, Palma RM (2010) Taphonomic analysis of fossil concentrations from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza Province, Argentina. J Iber Geol 36:55–71Google Scholar
  11. Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57CrossRefGoogle Scholar
  12. Caswell BA, Coe AL, Cohen AS (2009) New range data for marine invertebrate species across the early Toarcian (early Jurassic) mass extinction. J Geol Soc London 166:859–872CrossRefGoogle Scholar
  13. Chafetz HS (1986) Marine peloids: a product of bacterially induced precipitation of calcite. J Sediment Petrol 56:812–817Google Scholar
  14. Cook HE, Mullins HT (1983) Basin margin. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments, AAPG Memoir 33:539–618Google Scholar
  15. Duff KL (1978) Bivalvia from the English lower Oxford Clay (Middle Jurassic). Palaeontogr Soc Monogr 132:1–137Google Scholar
  16. Dumas S, Arnott RWC (2006) Origin and hummocky and swaley cross-stratification. The controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073–1076CrossRefGoogle Scholar
  17. Ekdale AA, Mason TR (1988) Characteristic trace-fossils associations in oxygen-poor sedimentary environments. Geology 16:720–723CrossRefGoogle Scholar
  18. Etter RJ (1996) The effect of wave action, prey type, and foraging time on growth of the predatory snail Nucella lapillus (L). J Exp Mar Biol Ecol 196:341–356CrossRefGoogle Scholar
  19. Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, BerlinCrossRefGoogle Scholar
  20. Gerth E (1925) La fauna neocomiana de la Cordillera Argentina en la parte meridional de la provincia de Mendoza. Academia Nacional de Ciencias, Cordoba, vol 9, pp 57–132Google Scholar
  21. Giambiagi L, Bechis F, Lanés S et al (2008) Formación y evolución Triásico-Jurásica del depocentro Atuel, Cuenca Neuquina, provincia de Mendoza. Rev Asoc Geol Argent 63:520–533Google Scholar
  22. Groeber P (1918) Estratigrafía del Dogger en la República Argentina. Estudio sintético comparativo. Dirección General de Minas, Geología e Hidrogeología, Buenos Aires, vol 18, Serie B, pp 1–81Google Scholar
  23. Groeber P (1933) Confluencia de los ríos Grande y Barrancas (Mendoza y Neuquén). Dirección Nacional de Geología y Minería, Buenos Aires, vol 38, pp 1–72Google Scholar
  24. Groeber P (1937) Descripción geológica de la Hoja 30c Puntilla de Huincán, provincia de Mendoza. Dirección Nacional de Geología y Minería, Buenos AiresGoogle Scholar
  25. Groeber P (1946) Observaciones geológicas a lo largo del meridiano 70. I. Hoja Chos Malal. Rev Asoc Geol Argent 1:177–208Google Scholar
  26. Groeber P, Stipanicic PN, Mingramm A (1953) Jurásico. In: Groeber P (ed) Mesozoico, Geografía de la República Argentina. Sociedad Argentina de Estudios Geográficos, Buenos Aires, GAEA 2, pp 143–347Google Scholar
  27. Hamon Y, Merzeraud G (2008) Facies architecture and cyclicity in a mosaic carbonate platform: effects of fault-block tectonics (Lower Lias, Causses platform, south-east France). Sedimentology 55:155–178Google Scholar
  28. Handford CR (1986) Facies and bedding sequences in shelf-storm-deposited carbonates—Fayetteville Shale and Pitkin Limestone (Mississippian), Arkansas. J Sediment Res 56:123–137CrossRefGoogle Scholar
  29. Harms JC, Southard JB, Walker RG (1982) Structures and sequences in clastic rocks. Lecture Notes SEPM Short Course, Tulsa 9:249Google Scholar
  30. Haq BU, Hardenbol J, Vail PV (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  31. Heller PL, Anderson DL, Angevine CL (1996) Is the middle Cretaceous pulse of rapid sea-floor spreading real or necessary? Geology 24:491–494CrossRefGoogle Scholar
  32. Husinec A, Read JF (2007) The Late Jurassic Tithonian, a greenhouse phase in the Middle Jurassic-Early Cretaceous “cool” mode: evidence from the cyclic Adriatic platform, Croatia. Sedimentology 54:317–337CrossRefGoogle Scholar
  33. Husinec A, Read JF (2011) Microbial laminite versus rooted and burrowed caps on peritidal cycles: salinity control on parasequence development, Early Cretaceous isolated carbonate platform, Croatia. Geol Soc Am Bull 123:1896–1907CrossRefGoogle Scholar
  34. James NP (1983) Reefs. In: Scholle PA, Debont DG, Moore CH (eds) Carbonate Depositional Environments, AAPG Memoir vol 33, pp 345–440Google Scholar
  35. James NP, Choquette PW (1984) Diagenesis 9. Limestones—the meteoric diagenetic environment. Geosci Can 11:161–194Google Scholar
  36. Jaworski E (1925) Contribución a la paleontología del Jurásico sudamericano (Revisada por Pablo Groeber). Dir Gral Min Geol Hidrol, Buenos Aires, Sec Geol 4:1–160Google Scholar
  37. Kauffman EG, Sageman BB (1990) Biological sensing of benthic environments in dark shales and related oxygen-restricted facies. In: Ginsburg RN, Beaudoin B (eds) Cretaceous resources, events and rhythms. Kluwer Academic Publishers, Dordrecht, pp 121–139Google Scholar
  38. Kazmierczak J, Coleman ML, Gruszczynski M et al (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeont Pol 41:319–338Google Scholar
  39. Kershaw S (1994) Classification and geological significance of biostromes. Facies 31:81–92CrossRefGoogle Scholar
  40. Keupp H, Koch R, Leinfelder RR (1990) Steuerungsprozesse der Entwicklung von Oberjura-Spongiolithen Sueddeutschlands: Kenntnisstand, Problem und Perspectiven. Facies 23:141–174CrossRefGoogle Scholar
  41. Kidwell SM, Bosence DW (1991) Taphonomy and time-averaging of marine faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Topics in Geobiology 9, pp 115–209Google Scholar
  42. Kidwell SM, Holland SM (1991) Field description of coarse bioclastic fabrics. Palaios 6:426–434CrossRefGoogle Scholar
  43. Kidwell SM, Fürsich FT, Aigner T (1986) Conceptual framework for the analysis and classification of shell concentrations. Palaios 1:228–238CrossRefGoogle Scholar
  44. Kietzmann DA, Palma RA, Ferreyra TMA (2016) Análisis de facies y asignación estratigráfica de los depósitos fluviales innominados del Jurásico Medio de la Cuenca Neuquina surmendocina. Rev Asoc Geol Argent 73:104–116Google Scholar
  45. Kreisa RR (1981) Storm-generated sedimentary structures in subtidal marine facies with examples from the middle and upper Ordovician of southwestern Virginia. J Sediment Petrol 51:832–848Google Scholar
  46. Kornicker LS, Wise CD, Wise JM (1963) Factors affecting the distribution of opposing mollusk valves. J Sediment Petrol 33:703–712Google Scholar
  47. Lazo DG, Palma RM, Piethé RD (2008) La traza Dactyloidites ottoi (Geinitz) en la Formación La Manga, Oxfordiano de Mendoza. Ameghiniana 45:627–632Google Scholar
  48. Leanza HA (1981) The Jurassic-Cretaceous boundary beds in west-central Argentina and their ammonite zones. Neues Jahrb Geol P-A 161:62–92Google Scholar
  49. Leanza HA (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev Mus Argent Cs Nat 11:145–184CrossRefGoogle Scholar
  50. Legarreta L (1991) Evolution of a Callovian-Oxfordian carbonate margin in the Neuquén Basin, of west-central Argentina: facies, architecture, depositional sequences and global sea-level changes. Sediment Geol 70:209–240CrossRefGoogle Scholar
  51. Legarreta L, Gulisano CA (1989) Análisis estratigráfico de la Cuenca Neuquina (Triásico Superior- Terciario Inferior). In: Chebli GA, Spalletti L (eds) Cuencas Sedimentarias Argentinas, Simposio Cuencas Sedimentarias Argentinas, Universidad de Tucumán, Serie Correlación Geológica, vol 6, pp 221–243Google Scholar
  52. Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal pattern, sequences and paleogeographic evolution. Palaeogeogr Palaeocl 120:303–330CrossRefGoogle Scholar
  53. Leinfelder RR (1992) A modern-type Kimmeridgian reef (Ota Limestone); Portugal. Implications for Jurassic reef models. Facies 26:11–34CrossRefGoogle Scholar
  54. Lo Forte G, Palma RM (2002) Facies, microfacies and diagenesis of Late Callovian-Early Oxfordian carbonates (La Manga Formation) in the west central Argentinian High Andes. Carbonate Evaporite 17:1–16CrossRefGoogle Scholar
  55. Loucks RG (1999) Paleocave Carbonatic Reservoir: origins, burial-depth modifications, spatial complexity and reservoir implications. AAPG Bull 83:1795–1834Google Scholar
  56. MacEachern JA, Pemberton SG (1992) Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western interior seaway of North America. In: Pemberton SG (ed) Aplications of ichnology to petroleum exploration, SEPM, Core Workshop 17, Tulsa, pp 57–84Google Scholar
  57. Mazzulo SJ, Mazzulo LJ (1992) Paleokarst and karst associated hydrocarbon reservoir in the Fusselman Formation, west Texas, Permian basin. In: Candelaria MP, Reed CL (eds) Paleokarst, karst related diagenesis and reservoir development: examples from Ordovician-Devonian age strata of West Texas and the mid-continent: Permian Basin Section. SEPM 92, Tulsa, pp 110–120Google Scholar
  58. Min MZ, Lug XZ, Mao SL et al (2001) An excellent fossil wood cell texture with primary uranium minerals at a sandstone-hosted roll-type uranium deposit, NW China. Ore Geol Rev 17:233–239CrossRefGoogle Scholar
  59. Mitchum RM Jr, Uliana MA (1985) Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic-Lower Cretaceous, Neuquén Basin, Argentina. AAPG Memoir 39:255–274Google Scholar
  60. Morsch SM (1990) Corales (Scleractinia) de la extremidad sur de la Sierra de la Vaca Muerta, Formación La Manga (Oxfordiano), provincia del Neuquén, Argentina. Ameghiniana 27:19–28Google Scholar
  61. Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48:269–299CrossRefGoogle Scholar
  62. Nagle JS (1967) Wave and current orientation of shells. J Sediment Petrol 37:1124–1138Google Scholar
  63. Nori L, Lathuilière B (2003) Form and environment of Gryphaea arcuata. Lethaia 36:83–96CrossRefGoogle Scholar
  64. Oschmann W (1988) Kimmeridge Clay sedimentation—A new cyclicity model. Palaeogeogr Palaeocl 65:217–251CrossRefGoogle Scholar
  65. Palma RM, Lo Forte GL, Medhli M et al (2005) High-frecuency cyclicity of the Callovian Calabozo Formation, Neuquén Basin, Argentina. Geol Acta 3:119–132Google Scholar
  66. Palma RM, López-Gómez J, Piethé RD (2007) Oxfordian ramp system (La Manga Formation) in the Bardas Blancas area (Mendoza Province), Neuquén Basin, Argentina: facies and depositional sequences. Sediment Geol 195:113–134CrossRefGoogle Scholar
  67. Palma RM, Kietzmann DA, Adamonis S et al (2009) Oxfordian reef architecture of the La Manga Formation, Neuquén Basin, Mendoza Province, Argentina. Sediment Geol 221:127–140CrossRefGoogle Scholar
  68. Palma RM, Riccardi AC, Kietzmann DA et al (2011) Depósitos carbonáticos de la Formación La Manga (Caloviano inferior - Oxfordiano medio): evidencias de regresión forzada. Depocentro Atuel, Mendoza, Cuenca Neuquina. In: Abstracts of the 18 Congreso Geológico Argentino, 2–6 May 2018Google Scholar
  69. Palma RM, Kietzmann DA, Martín-Chivelet J et al (2012) New biostratigraphic data from the Callovian-Oxfordian La Manga Formation, Neuquén Basin, Argentina: Evidence from an ammonite condensed level. Rev Paléobiol 11:345–356Google Scholar
  70. Palma RM, Kietzmann DA, Bressan GS et al (2013) Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina. J S Am Earth Sci 47:1–11CrossRefGoogle Scholar
  71. Palma RM, Bressan GS, Kietzmann DA et al (2014) Palaeoenvironmental significance of middle Oxfordian deep marine deposits from La Manga Formation, Neuquén Basin, Argentina. J Iber Geol 40:507–520CrossRefGoogle Scholar
  72. Palma RM, Kietzmann DA, Comerio M et al (2015) Oxfordian microbial laminites from La Manga Formation, Neuquén Basin, Argentina: remarkable nanobacteria preservation. J Iber Geol 41:351–363Google Scholar
  73. Palma RM, Bressan GS, López-Gómez J et al (2017) Las facies paleokársticas de la Fm. La Manga (Oxfordiano Medio) en el sur de Mendoza. Rev Asoc Geol Argent 74:40–48Google Scholar
  74. Permberton SG, Frey RW (1984) Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceus) at Seebe, Alberta. In: Stott DF, Glass DJ (eds.) The Mesozoic of Middle North America. Canadian Society of Petroleum Geologists, vol 9, p 281–304Google Scholar
  75. Perri E, Tucker ME (2007) Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology 35:207–210CrossRefGoogle Scholar
  76. Plint AG, Norris B (1991) Anatomy of a ramp margin sequence: facies successions, paleogeography and sediment dispersal patterns in the Muskiki and Marshybank formations, Alberta Foreland Basin. B Can Petrol Geol 39:18–42Google Scholar
  77. Plint AG, Nummedal D (2000) The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. In: Hunt D, Gawthorpe RLG (eds) Sedimentary responses to forced regressions. The Geological Society, London, SP 172, pp 1–17CrossRefGoogle Scholar
  78. Pratt BR (1995) The origin, biota and evolution of deep-water mud-mounds. In: Monty CLV, Bosence DW, Bridges PH, Pratt BR (eds) Carbonate mud-mounds: their origin and evolution. IAS, SP, pp 123–2349Google Scholar
  79. Reid RP, Foster JS, Radtke G et al (2011) Modern Marine Stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: environmental setting, accretion mechanisms and role of Euendoliths. Advances in Stromatolite Geobiology. Lect Note Earth Sci 131:77–89CrossRefGoogle Scholar
  80. Röhl H-J, Schmid-Röhl A, Oschmann W et al (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeocl 165:27–52CrossRefGoogle Scholar
  81. Riccardi AC (1984) Las asociaciones de amonitas del Jurásico y Cretácico de Argentina. In: Abstracts of the 9 Congreso Geológico Argentino, San Carlos de Bariloche, 5–9 Nov 1984Google Scholar
  82. Riccardi AC (1992) Biostratigraphy of west-central Argentina. In: Westermann GEG (ed.) The Jurassic of the Circum-Pacific. Cambridge University Press, Cambridge, pp 139–141Google Scholar
  83. Riccardi AC (1996) Heterochronic changes in the Andean Neuquéniceratinae (Ammonoidea, Middle Jurassic). In: Abstractys of the 4 international symposium Cephalopods, Present and Past, 15–17 July 1996Google Scholar
  84. Riccardi AC (2008) The marine Jurassic of Argentina: a biostratigraphic framework. Episodes 31:326–335CrossRefGoogle Scholar
  85. Sarg JF (1988) Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner JC (eds.) Sea level changes-an integrated approach. SEPM SP 42, pp 155–351Google Scholar
  86. Savrda CE, Bottjer DJ, Seilacher A (1991) Redox-related benthic events. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 524–541Google Scholar
  87. Schieber J, Baird G (2001) On the origin and significance of pyrite spheres in Devonian black shales of North America. J Sediment Res 71:55–166CrossRefGoogle Scholar
  88. Schmid DU, Jonischkeit A (1995) The Upper Jurassic Sao Romao limestone (Algarve, Portugal): an isolated carbonate ramp. Profil 8:319–337Google Scholar
  89. Shinn EA (1983) Tidal flats. In: Scholle PA, Bebout DG, Moore CH (eds.) Carbonate depositional environments. AAPG Memoir vol 33, pp 171–210Google Scholar
  90. Stipanicic PN (1951) Sobre la presencia del Oxfordense superior en el Arroyo de La Manga, Mendoza. Rev Asoc Geol Argentina 6:213–240Google Scholar
  91. Stipanicic PN (1965) El Jurásico de la Vega de la Veranada (Neuquén), el Oxfordense y el diastrofismo divesiano (Agassiz-Yaila) en Argentina. Rev Asoc Geol Argent 20:403–478Google Scholar
  92. Stipanicic PN, Westermann GEG, Riccardi AC (1975) The Indo-Pacific ammonite Mayaites in the Oxfordian of the Southern Andes. Ameghiniana 12:281–305Google Scholar
  93. Strasser A (1986) Ooids in Purbeck limestones (lowermost Cretaceous), of the Swiss and French Juras. Sedimentology 33:711–728CrossRefGoogle Scholar
  94. Strasser A, Hillgärtner H, Pasquier JB (2004) Cyclostratigraphic timing of sedimentary processes: An example from the Berriasian of the Swiss and French Jura Mountains. In: D’Argenio B, Fischer AG, Premoli Silva I, Weissert I, Ferreri V (eds) Cyclostratigraphy: approaches and case histories. SEPM SP 81, pp 135–151Google Scholar
  95. Taylor KG, Macquaker JHS (2000) Spatial and temporal distribution of authigenic minerals in continental shelf sediments: implications for sequence stratigraphic analysis. In: Glenn CR, Prevot-Lucas L, Lucas J (eds) Marine authigenesis: MICROBIAL TO GLOBal. SEPM, SP 66, p 309–323Google Scholar
  96. Tribovillard N (1998) Bacterially mediated peloids in laminated, organic matter rich, limestones: an unobtrusive presence. Terra Nova 10:126–130CrossRefGoogle Scholar
  97. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482CrossRefGoogle Scholar
  98. Van Wagoner JC, Posamentier HW, Mitchum RM et al (1988) An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus CK, Hastings BS, Kendall CGStC et al (eds.) Sea level changes—an integrated approach. SEPM, SP 42, pp 39–45Google Scholar
  99. Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum basins of South America. AAPG Memoir 62, pp 383–402Google Scholar
  100. Weedon GP, Jenkyns HC, Coe AL et al (1999) Astronomical calibration of the Jurassic time scale from cyclostratigraphy in British mudrock formations. Philos T Roy Soc A 357:1787–1813CrossRefGoogle Scholar
  101. Wilkin RT, Barnes HI (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Ac 61:323–339CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ricardo M. Palma
    • 1
    Email author
  • Graciela S. Bressan
    • 1
  • Alberto C. Riccardi
    • 2
  • José López-Gómez
    • 3
  • Javier Martín-Chivelet
    • 4
  1. 1.Facultad de Ciencias Exactas y Naturales Departamento de Ciencias Geológicas, IDEAN—CONICETUniversidad de Buenos AiresLa PlataArgentina
  2. 2.Facultad de Ciencias Naturales y Museo—CONICETUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Consejo Superior de Investigaciones Cienctíficas, Instituto de Geociencias (CSIC)Universidad Complutense de MadridMadridSpain
  4. 4.Facultad de Ciencias Geológicas & Instituto de Geociencias (CSIC)Universidad Complutense de MadridMadridSpain

Personalised recommendations