Advertisement

Pliocene to Quaternary Retroarc Extension in the Neuquén Basin: Geophysical Characterization of the Loncopué Trough

  • Agustina PesceEmail author
  • Guido M. Gianni
  • Mario E. Giménez
  • Andrés Folguera
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The Loncopué Trough is an extensional basin produced by the extensional reactivation of the hinterland area of the Southern Central Andes. Neotectonic extensional structures in this basin bound a broad topographic low filled with volcanic and volcaniclastic rocks. The studies carried out in the area of the Loncopué Trough have concentrated on the study of its neotectonic activity, volcano-sedimentary infill and the surface structure. Less effort has been paid to characterize the magnetic properties of the crust and to unravel the deep geometry of this Pliocene to Quaternary extensional setting. Therefore, magnetic and gravimetric data were used to highlight the boundaries of the magnetic sources and to obtain a crustal-scale 2D density model at 38°S. To complement this work, an effective susceptibility model using the Magnetization Vector Inversion method was estimated, which takes into account the combined effects of remanence and induced magnetization. Additionally, the Curie depth points were calculated through the spectral analysis technique in order to determine the thermal structure of the retroarc area. From this analysis, we were able to characterize the main structures associated with this extensional trough. Based on this analysis, only the Loncopué eastern fault system is considered as having a crustal-scale hierarchy. Additionally, the susceptibility model revealed possible fluid (magmatic and or hydrothermal) reservoirs in the area of the Copahue volcano and the Codihue and Cajón de Almanza depocenters/volcanic fields. These spots coincide with shallower values of the calculated Curie depth point, implying higher heat flows. Finally, the 2D density model shows an area of lower crustal attenuation that is coincident with one of the described potential magmatic/hydrothermal reservoirs and is decoupled from the upper crust extensional structures immediately to the west in the Loncopué Trough. This crustal configuration could be explained by a simple shear deformation model with a crustal-scale master fault dipping to the east.

Keywords

Loncopué Trough Extensional basin Retroarc volcanism Simple shear model Effect susceptibility model Southern Central Andes 

References

  1. Anci S, Ruiz F, Lince Klinger F, Leiva F, García H, Acosta G (2016) Interpretación de la corteza superior a partir de meétodos potenciales en la región de la Payenia y faja plegada y corrida de Malargüe. Rev Asoc Geol Argent 73:159–172Google Scholar
  2. Baranov V (1957) A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies. Geophysics 22:359–382CrossRefGoogle Scholar
  3. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, CambridgeGoogle Scholar
  4. Briggs IC (1974) Machine contouring using minimum curvature. Geophysics 39:39–48CrossRefGoogle Scholar
  5. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res Solid Earth 100:9761–9788CrossRefGoogle Scholar
  6. Ellis RG, de Wet B, Macleod IN (2012) Inversion of magnetic data for remanent and induced sources. In: Abstracts of the ASEG 2012.  https://doi.org/10.1071/aseg2012ab117CrossRefGoogle Scholar
  7. Folguera A, Ramos VA, Dí́az EFG, Hermanns R (2006) Miocene to Quaternary deformation of the Guañacos fold and thrust belt in the Neuquén Andes between 37°S and 37°30′S. Geol Soc Am SP 407:247–266Google Scholar
  8. Folguera A, Rojas Vera E, Bottesi G, Valcarce GZ, Ramos VA (2010) The Loncopué Trough: Cenozoic basin produced by extension in the southern Central Andes. J Geodyn 49:287–295CrossRefGoogle Scholar
  9. Gianni GM, García HPA, Lupari M, Pesce A, Folguera A (2017) Plume overriding triggers shallow subduction and orogeny in the southern Central Andes. Gondwana Res 49:387–395CrossRefGoogle Scholar
  10. Hinze WJ, Aiken C, Brozena J, Coakley B, Dater D, Flanagan G, Forsberg R, Hildenbrand T, Keller GR, Kellogg J et al (2005) New standards for reducing gravity data: The North American gravity database. Geophysics 70:J25–J32.  https://doi.org/10.1190/1.1988183CrossRefGoogle Scholar
  11. Hinze WJ, Von Frese RRB, Saad AH (2013) Gravity and magnetic exploration: principles, practices, and applications. Cambridge University Press, CambridgeGoogle Scholar
  12. Jordan TE, Schlunegger F, Cardozo N (2001) Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J South Am Earth Sci 14(7):775–798CrossRefGoogle Scholar
  13. Kane MF (1962) A comprehensive system of terrain corrections using a digital computer. Geophysics 27:455–462CrossRefGoogle Scholar
  14. Kay SM, Copeland P (2006) Early to middle Miocene backarc magmas of the Neuquén Basin: geochemical consequences of slab shallowing and the westward drift of South America. Geol Soc Am SP 407:185–213Google Scholar
  15. Lister GS, Davis GA (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A. J Struct Geol 11:65–94CrossRefGoogle Scholar
  16. Lister GS, Etheridge MA, Symonds PA (1991) Detachment models for the formation of passive continental margins. Tectonics 10:1038–1064CrossRefGoogle Scholar
  17. Lüth S, Wigger P, I.R. Group (2003) A crustal model along 39°S from a seismic refraction profile-ISSA 2000. Rev Geol Chile 30:83–101Google Scholar
  18. Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371CrossRefGoogle Scholar
  19. Pesce A, Gimenez ME, Gianni GM, Folguera A, Martinez P (2019) Magnetic characterization of a retroarc extensional basin: the Loncopué Trough. J S Am Earth Sci 89:55–62CrossRefGoogle Scholar
  20. Pesicek JD, Engdahl ER, Thurber CH, DeShon HR, Lange D (2012) Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30–40°S), Chile. Geophys J Int 191:317–324CrossRefGoogle Scholar
  21. Phillips JD (2007) Geosoft eXecutables (GX’s) developed by the US Geological Survey, version 2.0, with notes on GX development from Fortran code. US Geological SurveyGoogle Scholar
  22. Radic JP, Rojas L, Carpinelli A, Zurita E (2002) Evolución tectónica de la cuenca terciaria de Cura-Mallín, región cordillerana chileno argentina (36°30′–39°00′S). In: Abstracts of the 15 Congreso Geológico Argentino, Córdoba, 23–26 Aug 2002Google Scholar
  23. Ramos VA (1978) Estructura. Geología y recursos naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 99–118Google Scholar
  24. Rojas Vera E, Folguera A, Valcarce GZ, Ramos VA (2008) The Loncopué Trough: a major orogenic collapse at the western Agrio fold and thrust belt (Andes of Neuquén, 36°40′–38°40′S). In: Abstracts of the 7 international symposium on Andean geodynamics, NizeGoogle Scholar
  25. Rojas Vera EA, Folguera A, Valcarce GZ, Giménez M (2010) Neogene to Quaternary extensional reactivation of a fold and thrust belt: The Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38°–39°S). Tectonophysics 492:279–294CrossRefGoogle Scholar
  26. Rojas Vera EA, Folguera A, Zamora Valcarce G (2014) Structure and development of the Andean system between 36° and 39°S. J Geodyn 73:34–52CrossRefGoogle Scholar
  27. Ruppel C (1995) Extensional processes in continental lithosphere. J Geophys Res: Solid Earth 100:24187–24215CrossRefGoogle Scholar
  28. Soler SR (2015) Métodos Espectrales para la determinación de la Profundidad del Punto de Curie y Espesor Elástico de la corteza TerrestreGoogle Scholar
  29. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470CrossRefGoogle Scholar
  30. Valcarce GZ, Zapata T, del Pino D, Ansa A (2006) Structural evolution and magmatic characteristics of the Agrio fold and thrust belt. Geol Soc Am SP 407:125–145Google Scholar
  31. Varekamp JC, Hesse A, Mandeville CW (2010) Back-arc basalts from the Loncopué graben (Province of Neuquén, Argentina). J Volcanol Geoth Res 197:313–328CrossRefGoogle Scholar
  32. Webring M (1985) SAKI: a Fortran program for generalized linear inversion of gravity and magnetic profiles. Technical Report 85, 122 pGoogle Scholar
  33. Wernicke B, Burchfiel BC (1982) Modes of extensional tectonics. J Struct Geol 4:105–115CrossRefGoogle Scholar
  34. Yuan X, Asch G, Bataille K et al (2006) Deep seismic images of the Southern Andes. Geol Soc Am SP 407:61–72Google Scholar
  35. Zapata T, Brissón I, Dzelalija F (1999) The role of basement in the Andean fold and thrust belt of the Neuquén Basin. Thrust tectonics 99:122–124Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Agustina Pesce
    • 1
    Email author
  • Guido M. Gianni
    • 1
  • Mario E. Giménez
    • 1
  • Andrés Folguera
    • 2
  1. 1.IGSV, Instituto Geofísico Sismológico Ing. Volponi, Universidad Nacional de San JuanSan JuanArgentina
  2. 2.CONICET—Universidad de Buenos Aires, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN)Buenos AiresArgentina

Personalised recommendations