Advertisement

Quaternary Deformation in the Neuquén Basin, Explained by the Interaction Between Mantle Dynamics and Tectonics

  • Lucía SagripantiEmail author
  • Bruno Colavitto
  • Ana Astort
  • Andrés Folguera
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Quaternary deformations described in the retro-arc region at the latitudes of the Neuquén Basin can be divided into two main groups: a northern group characterized by Quaternary deformation zones concentrated near the main topographic breaks of different morphostructural systems, and a second group located in the southern Neuquén Basin distinguished by disconnected, sparced and noncontinuous Quaternary deformational zones. In the northern Neuquén Basin, evidence of active deformation is associated with the Frontal Cordillera (33°–34° S); while in the foreland area, young deformations concentrate in the San Rafael Block. In the southern Neuquén Basin, a western deformational belt constitutes the continuation to the north of an intra-arc fault system associated with dip- and strike-slip displacements in a strain-partitioned regime (Liquiñe–Ofqui fault system). At these latitudes, to the east, isolated evidence of Quaternary deformation, regional uplift and development of non-equilibrated fluvial profiles are recognized in the Tromen and Auca Mahuida volcanic plateaux and sierra de Cara Cura-sierra de Reyes area. These systems are short and unconnected and have been explained through an intricate pattern of asthenospheric anomalies evidenced from magnetotelluric data. These mantle anomalies could be related to the tearing of the subducted Nazca plate at depth evidenced by seismic-tomographic data. We therefore suggest that the thermally weakened crust at the southern Neuquén Basin latitudes could be the main control responsible for focalizing contractional, extensional and transpressional deformations in isolated mountain systems.

Keywords

Quaternary deformation Mantle dynamics Slab-tear Retro-arc 

Notes

Acknowledgement

This work was supported by the National Council of Science of Argentina and funded by PIP 2015-2017 (11220150100426CO), UBACYT 20020110100019 and PICT - 2016-2252. We acknowledge Carlos Costa for sharing discussions that improved this work. This is the contribution R313 of the Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET).

References

  1. Bastias H, Tello G, Perucca L, Paredes J (1993) Peligro sísmico y neotectonica. In: Ramos V (ed) Geología de la provincia de Mendoza. Asociación Geológica Argentina, pp 645–658Google Scholar
  2. Bechis F, Giambiagi L, Garcia V, Lanes S, Cristallini E, Tunik M (2010) Kinematic analysis of a transtensional fault system: The Atuel depocenter of the Neuquén basin, southern Central Andes, Argentina. J Struct Geol 32(7):886–899CrossRefGoogle Scholar
  3. Branellec M, Niviere B, Callot JP, Regard V, Ringenbach JC (2016) Evidence of active shortening along the eastern border of the San Rafael basement block: characterization of the seismic source of the Villa Atuel earthquake (1929), Mendoza province, Argentina. Geol Mag, 1–15Google Scholar
  4. Burd AI, Booker JR, Mackie R, Favetto A, Pomposiello MC (2014) Threedimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean back-arc of Argentina near 36.5° S: decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. J Geophys Int 198(2):812–827Google Scholar
  5. Carbone O, Franzese J, Limeres M, Delpino D, Martinez R (2011) El Ciclo Precuyano (Triasico Tardio – Jurasico Temprano) en la Cuenca Neuquina. In: Abstracts of the 18 Congreso Geologico Argentino, Neuquén, 2–6 May 2011Google Scholar
  6. Cobbold PR, Rossello E (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Mar Petroleum Geol 20:429–443CrossRefGoogle Scholar
  7. Colavitto B, Sagripanti L, Lupari M, Fennell L, Folguera A (2016) Quaternary deformation at the eastern Malargüe fold and thrust belt, Mendoza, Argentina. In: Abstracts of the 1 Simposio de Tectónica Sudamericana, Santiago, Santiago de Chile, 14–16 Nov 2016Google Scholar
  8. Colavitto B, Sagripanti L, Fennell L, Folguera A, Costa C (2019) Evidence of Quaternary tectonics along Río Grande valley, southern Malargüe fold and thrust belt, Mendoza, Argentina. GeomorphologyGoogle Scholar
  9. Cortes J, Costa C (1996) Tectónica cuaternaria en la desembocadura del Río de las Peñas, borde oriental de la precordillera de Mendoza. In: Abstracts of the 13 Congreso Geológico Argentino y 3 Congreso Exploración de Hidrocarburos, Mendoza, 13–18 Oct 1996Google Scholar
  10. Cortes J, Vinciguerra P, Yamín M, Pasini M (1999) Tectónica Cuaternaria en la región andina del nuevo Cuyo. In: Caminos R (ed) Geología Argentina, vol 29. SEGEMAR, Buenos Aires, pp 760–778Google Scholar
  11. Costa C, Vita-Finzi C (1996) Late Holocene intraplate faulting in the SE Sierras Pampeanas, Argentina. Geology 24:1127–1130CrossRefGoogle Scholar
  12. Costa CH, Giaccardi AD, Díaz EFG (1999) Palaeolandsurfaces and neotectonic analysis in the southern Sierras Pampeanas, Argentina. Geol Soc, London, Special Publications, 162(1):229–238.  https://doi.org/10.1144/GSL.SP.1999.162.01.18CrossRefGoogle Scholar
  13. Costa C, Audemard FA, Bezerra FHR, Lavenu A, Machette MN, París G (2006a) An overview of the main Quateranry deformation of South America. Rev Asoc Geol Argent 61(4):461–479Google Scholar
  14. Costa C, Gardini C, Diederix H et al (2006b) The Active Andean Orogenic Front at the Southernmost Pampean Flat-slab. Backbone of the Americas. In: Abstracts of the GSA Annual Meeting, Mendoza, 3–7 Apr 2006Google Scholar
  15. Costa C, Cisneros H, Salvarredi J, Galluci A (2006c) La neotectónica del margen oriental del bloque de San Rafael: Nuevas consideraciones. Asociación Geológica Argentina, Serie D SP 6:33–40Google Scholar
  16. Cristallini E, Bottesi G, Gavarrino A, Rodriguez L, Tomezzoli R, Comeron R (2006) Synrift geometry of the Neuquén basin in northeastern Neuquén province, Argentina. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39° S lat). Geological Society of America, SP 407, pp 147–162Google Scholar
  17. Fennell L, Folguera A, Naipauer M, Gianni G, Rojas Vera E, Bottesi G, Ramos VA (2015) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S). Basin Res 29(1):51–72Google Scholar
  18. Folguera A, Ramos VA, Hermanns RL, Naranjo J (2004) Neotectonics in the foothills of the southernmost central Andes (37°–38° S): evidence of strike-slip displacement along the Antiñir Copahue fault zone. Tectonics 23.  https://doi.org/10.1029/2003tc001533CrossRefGoogle Scholar
  19. Folguera A, Introcaso A, Gimenez M, Ruiz F, Martínez P, Tunstall C, García Morabito E, Ramos VA (2007) Crustal attenuation in the Southern Andean retroarc (38′°–39° 30′ S) determined from tectonic and gravimetric studies: the Lonco-Luán asthenospheric anomaly. Tectonophysics 439:129–147CrossRefGoogle Scholar
  20. Folguera A, Bottesi G, Zapata T, Ramos VA (2008) Crustal collapse in the Andean back-arc since 2 Ma: Tromen volcanic plateau, Southern central Andes (36°40′–37°30′ S). Tectonophysics 459:140–160CrossRefGoogle Scholar
  21. Folguera A, Naranjo JA, Orihashi Y, Sumino H, Keisuke N, Polanco E, Ramos VA (2009) Retroarc volcanism in the northern San Rafael block (34°–35° 30′ S). J Volcanol Geoth Res 186:169–185CrossRefGoogle Scholar
  22. Folguera A, Rojas Vera E, Bottesi G, Zamora Valcarce G, Ramos VA (2010) The Loncopue trough: a cenozoic basin produced by extension in the southern central Andes. J Geodyn 49:287–295CrossRefGoogle Scholar
  23. Folguera A, Gianni G, Sagripanti L, Rojas Vera EA, Novara I, Alvarez O, Orts D, Tobal J, Gimenes M, Ruiz F, Martinez P, Ramos VA (2015a) A review about the mechanisms associated with active deformation, regional uplift and subsidence in southern South America. J S Am Earth Sci 64:511–529CrossRefGoogle Scholar
  24. Folguera A, Bottesi G, Duddy I, Martín-González F, Orts D, Sagripanti L, Rojas Vera E, Ramos VA (2015b) Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low temperature thermochronology. J S Am Earth Sci 64:381–398CrossRefGoogle Scholar
  25. Galetto A, García V, Caselli A (2018) Structural controls of the Domuyo geothermal field, Southern Andes (36°–38′ S), Argentina. J Struct Geol 114:76–94CrossRefGoogle Scholar
  26. Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremond d’Ars J (2007) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26.  https://doi.org/10.1029/2006tc002011CrossRefGoogle Scholar
  27. García VH, Casas AL (2014) Quaternary tectonics and seismic potential of the Andean retrowedge at 33°–34° S. In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farías M (eds) Geodynamic Processes in the Andes of Central Chile and Argentina. The Geological Society, London, SP 399, pp 3–11Google Scholar
  28. Garcia VH, Cristallini EO, Cortés JM, Rodríguez C (2005) Structure and neotectonics of the Jaboncillo and Del Peral anticlines: New evidences of Pleistocene to? Holocene deformation in the Andean Piedmont. In: Abstracts of the 6 International Symposium on Andean Geodynamics, Barcelona, 12–14 Sept 2005Google Scholar
  29. García Morabito G (2004) Geología del sector occidental de la depresión de Loncopue, provincia del Neuquén. Degree thesis, Universidad de Buenos AiresGoogle Scholar
  30. Giambiagi LB, Ramos VA (2002) Structural evolution of the Andes in a transitional zone between flat and normal subduction (33° 30′–33° 45′ S), Argentina and Chile. J South Am Earth Sci 15:101–116CrossRefGoogle Scholar
  31. Giambiagi LB, Ramos VA, Godoy E, Alvarez PP, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22.  https://doi.org/10.1029/2001tc001354CrossRefGoogle Scholar
  32. Giambiagi L, Tunik M, Barredo S, Bechis F, Ghiglione M, Alvarez P, Drosina M (2009) Cinematica de apertura del sector norte de la cuenca Neuquina. Rev Asoc Geol Argent 65(2):278–292Google Scholar
  33. Gudnason J, Holm PM, Søager N, Llambías EJ (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. J S Am Earth Sci 37:191–201CrossRefGoogle Scholar
  34. Hoke GD, Graber N R, Mescua J F., Giambiagi LB, Fitzgerald PG, Metcalf JR (2014) Nearpure surface uplift of the Argentine Frontal Cordillera: insights from (U/Th)/He thermochronometry and geomorphic analysis. In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L et al (eds) Geodynamic processes in the Andes of Central Chile and Argentina. The Geological Society, London, SP 399.  https://doi.org/10.1144/sp399.10CrossRefGoogle Scholar
  35. Irigoyen MV, Buchan KL, Villeneuve ME, Brown RL (2002) Cronología y significado tectónico de los estratos sinorogenicos neogenos aflorantes en la región de Cacheuta-Tupungato, Provincia de Mendoza. Rev Asoc Geol Argent 57:3–18Google Scholar
  36. Jordan TE, Burns WM, Veiga R, Pangaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20:308–324CrossRefGoogle Scholar
  37. Kay SM, Burns WM, Copeland PC, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S Latitude). Geological Society of America, SP 407:19–60Google Scholar
  38. Kozlowski E, Manceda R, Ramos VA (1993) Estructura. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 235–256Google Scholar
  39. Lavenu A, Cembrano J (1999) Estados de esfuerzo compresivo plioceno y compresivo-transpresivo pleistoceno, Andes del sur, Chile (38 y 42 30′ S). Rev Geol Chile 26(1):67–87CrossRefGoogle Scholar
  40. Litvak V, Spagnuolo M, Folguera A, Poma S, Jones R, Ramos VA (2015) Late Cenozoic calcalkaline volcanic rocks over the Payenia shallow subduction zone, South-Central Andean back-arc (34° 30′-37° S), Argentina. J S Am Earth Sci 64:365–380CrossRefGoogle Scholar
  41. Llambías EJ, Palacios M, Danderfer J (1982) Las erupciones Holocenas del Volcan Tromen (Provincia de Neuquén) y su significado en el perfil transversal E - O a la latitud 37° S. In: Abstracts of the 5 Congreso Latinoamericano de Geología, Buenos Aires, 17–22 Oct 1982Google Scholar
  42. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Súarez SR, Welsink HJ (eds) Petroleum Basins of South America. AAPG Memoir 62, pp 369–382Google Scholar
  43. Messager G, Niviére B, Martinod J, Lacan P, Xavier JP (2010) Geomorphic evidence for PlioQuaternary compression in the Andean foothills of the southern Neuquén basin, Argentina. Tectonics 29.  https://doi.org/10.1029/2009tc002609CrossRefGoogle Scholar
  44. Messager G, Nivière B, Martinod J, Lacan P, Hervouët Y, Xavier JP (2013) Plio-Quaternary thin-skinned tectonics along the crustal front flexure of the southern Central Andes: a record of the regional stress regime or of local tectonic-driven gravitational processes? Int J Earth Sci 103:929–951CrossRefGoogle Scholar
  45. Miranda FJ, Folguera A, Leal P, Naranjo J, Pesce A (2006) Upper Pliocene to Lower Pleistocene volcanic complexes and Upper Neogene deformation in the south-central Andes (36°30′-38°00′SL). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°-39°SL). Geol Soc Am, SP 407:287–298Google Scholar
  46. Mosquera A, Ramos VA (2006) Intraplate deformation in the Neuquén embayment. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°-39° S Lat), Geol Soc Am, SP 407: 97–123Google Scholar
  47. Nacif S, Lupari M, Triep EG, Nacif A, Alvarez O, Folguera A, Gimenez M (2017) Change in the pattern of crustal seismicity at the Southern Central Andes from a local seismic network. Tectonophysics 708:56–69CrossRefGoogle Scholar
  48. Nivière B, Messager G, Carretier S, Lacan P (2013) Geomorphic expression of the Southern central Andes forebulge (37 S, Argentina). Terra Nova 25:361–367CrossRefGoogle Scholar
  49. Perucca L, Mehl AE, Zárate MA (2009) Neotectónica y sismicidad en el sector norte de la depresión de Tunuyán, provincia de Mendoza. Rev Asoc Geol Argent 64:263–274Google Scholar
  50. Pesicek JD, Engdahl ER, Thurber CH, DeShon HR, Lange D (2012) Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30–40 S). Chile. Geophys J Int 191:317–324CrossRefGoogle Scholar
  51. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a Case Study in Sequence Stratigraphy and Basin Dynamics. Geol Soc, London, SP 252:15–35Google Scholar
  52. Ramos VA, Zapata T, Cristallini E, Introcaso A (2004) The Andean thrust systemlatitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed) Thrust Tectonics and Hydrocarbon Systems. AAPG Memoir 82:30–50Google Scholar
  53. Rojas Vera EA, Selles D, Folguera A, Gímenez M, Ruíz F, Orts D, Zamora Valcarce G, Martínez P, Bechis F, Ramos VA (2014) The origin of the Loncopué trough in the retro-arc of the Southern Central Andes from field, geophysical and geochemical data. Tectonophysics 637:1–19CrossRefGoogle Scholar
  54. Rojas Vera EA, Mescua J, Folguera A, Becker TB, Sagripanti L, Fennell L, Orts D, Ramos AV (2015) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: insights from structural analysis and apatite fission track dating. J S Am Earth Sci 64:418–433CrossRefGoogle Scholar
  55. Sagripanti L, Bottesi G, Naipauer M, Folguera A, Ramos VA (2011) U/Pb ages on detrital zircons in the southern central Andes Neogene foreland (36°-37° S): constraints on Andean exhumation. J S Am Earth Sci 32:555–566CrossRefGoogle Scholar
  56. Sagripanti L, Folguera A, Gimenez ME, Rojas Vera EA, Fabiano JJ, Molnar N, Fennell L, Ramos VA (2014) Geometry of Middle to Late Triassic extensional deformation pattern in the Cordillera del Viento (Southern Central Andes): A combined field and geophysical study. J Iber Geol 40(2):349–366.  https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45305
  57. Sagripanti L, Rojas Vera E, Gianni G, Folguera A, Harvey J, Farías M, Ramos VA (2015) Neotectonic reactivation of the western section of the Malargüe fold and thrust belt (Tromen volcanic plateau, Southern Central Andes). Geomorphology 232:164–181CrossRefGoogle Scholar
  58. Sagripanti L, Colavitto B, Jagoe L, Folguera A, Costa C (2018) A review about the quaternary upper-plate deformation in the Southern Central Andes (36°-38°S): A plausible interaction between mantle dynamics and tectonics. J S Am Erath Sci 87:221–231CrossRefGoogle Scholar
  59. Spagnuolo MG, Litvak VD, Folguera A, Botessi G, Ramos VA (2012) Neogene magmatic expansion and mountain building processes in the southern Central Andes, 36–37°S, Argentina. J Geodyn 53:81–94CrossRefGoogle Scholar
  60. Turienzo MM (2010) Structural style of the Malargüe fold-and-thrust belt at the Diamante River area (34°30′ – 34°50′S) and its linkage with the Cordillera Frontal, Andes of Central Argentina. J S Am Earth Sci 29:537–556CrossRefGoogle Scholar
  61. Varekamp J, Hesse A, Mandeville C (2010) Back-arc basalts from the Loncopue graben (province of Neuquén, Argentina). J Volcanol Geoth Res 197:313–328CrossRefGoogle Scholar
  62. Verges J, Ramos V, Meigs A, Cristallini E, Bettini F, Cortés J (2006) Crustal wedging triggering recent deformation in the Andean thrust front between 31°S and 33°S: Sierras Pampeanas-Precordillera interaction. J Geophys Res 112, B03S15.  https://doi.org/10.1029/2006jb004287
  63. Yrigoyen MR (1993) Los depósitos sinorogénicos terciarios. In: Ramos VA (ed) Geología y recursos naturales de la provincia de Mendoza. Asociación Geologica Argentina, pp 123–148Google Scholar
  64. Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the Southern Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°-39°S Lat). Geol Soc Am, SP 407, p 61–72Google Scholar
  65. Zamora Valcarce G, Zapata T, Del Pino D, Ansa A (2006) Structural evolution and magmatic characteristics of the Agrio fold-and-thrust belt. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35E 39S Lat). Geological Society of America, SP 407, pp 125–145Google Scholar
  66. Zamora Valcarce G, Zapata T, Ramos VA, Rodríguez F, Bernardo ML (2009) Evolución tectónica del frente andino en Neuquén. Rev Asoc Geol Argent 65:192–203Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lucía Sagripanti
    • 1
    Email author
  • Bruno Colavitto
    • 1
  • Ana Astort
    • 1
  • Andrés Folguera
    • 1
  1. 1.Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias GeológicasInstituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), CONICET, Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations