Plume Subduction Beneath the Neuquén Basin and the Last Mountain Building Stage of the Southern Central Andes

  • Guido M. GianniEmail author
  • Agustina Pesce
  • Héctor P. A. García
  • Marianela Lupari
  • Sebastián Correa-Otto
  • Silvina Nacif
  • Andrés Folguera
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The occurrence of a Neogene shallow subduction stage, as well as, a Pliocene slab-tearing, and steepening of the Nazca plate in the southern Central Andes are well established. However, a satisfactory explanation for the origin and connection between these complex processes is still elusive. In this contribution, we revise the late Cenozoic tectonic and magmatic evolution of the southern Central Andes between 35° and 38° S and discuss different proposals for the Miocene slab shallowing and its Pliocene destabilization. Recent plate kinematic reconstructions show that Neogene arc-front expansion linked to slab shallowing, fold belt reactivation in the main cordillera and intraplate contraction in the San Rafael Block correlates with the subduction of the ancient Payenia plume, a deep mantle anomaly potentially rooted in the lower mantle. Also, the Nazca slab tear determined from tomographic analyses and subsequent slab steepening may also be a direct consequence of this plume subduction process. Considering the westward drift of South America and the presence of several neighbor hotspots over the Nazca plate, the Payenia plume overriding could be the first of future episodes of plume–trench interaction in the Andes.


Plume-modified orogenesis Flat slab Fold and thrust belt Plume–subduction zone interaction 



This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).


  1. Betts PG, Giles D, Foden J et al (2009) Mesoproterozoic plume-modified orogenesis in eastern Precambrian Australia. Tectonics 28:1–28CrossRefGoogle Scholar
  2. Betts PG, Mason WG, Moresi L (2012) The influence of a mantle plume head on the dynamics of a retreating subduction zone. Geology 40:739–742CrossRefGoogle Scholar
  3. Betts PG, Moresi L, Miller MS, Willis D (2015) Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China. Focus Geosc Front 6:49–59CrossRefGoogle Scholar
  4. Branellec M, Niviere B, Callot JP et al (2016) Evidence of active shortening along the eastern border of the San Rafael basement block: characterization of the seismic source of the Villa Atuel earthquake (1929), Mendoza province, Argentina. Geol 153:911–925Google Scholar
  5. Burd AI, Booker JR, Mackie R et al (2014) Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú volcanic field in the Andean backarc of Argentina near 36.5° S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys J Int 198:812–827CrossRefGoogle Scholar
  6. Chang SJ, Ferreira AM, Faccenda M (2016) Upper-and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs. Nat Commun 7Google Scholar
  7. Cobbold PR, Rossello EA (2003) Aptian to recent compressional deformation of the Neuquén Basin, Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  8. Dalziel IW, Lawver LA, Murphy JB (2000) Plumes, orogenesis, and supercontinental fragmentation. Earth Planetary Sci Let 178:1–11CrossRefGoogle Scholar
  9. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80CrossRefGoogle Scholar
  10. Dyhr CT, Holm PM, Llambías EJ (2013a) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: New insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volc Geotherm Res 266:50–68CrossRefGoogle Scholar
  11. Dyhr CT, Holm PM, Llambías EJ, Scherstén A (2013b) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza Region, Argentina. Lithos 179:67–83CrossRefGoogle Scholar
  12. Druken K, Kincaid C, Griffiths R, Stegman D, Hart S (2014) Plume–slab interaction: the Samoa-Tonga system. Phys Earth Planet Interiors 232:1–14CrossRefGoogle Scholar
  13. Fletcher M, Wyman DA (2015) Mantle plume–subduction zone interactions over the past 60 Ma. Lithos 233:162–173CrossRefGoogle Scholar
  14. Folguera A, Naranjo JA, Orihashi Y et al (2009) Retroarc volcanism in the northern San Rafael Block (34°–35° 30′ S), southern Central Andes: Occurrence, age, and tectonic setting. J Volc Geotherm Res 186:169–185CrossRefGoogle Scholar
  15. Folguera A, Bottesi G, Duddy I (2015) Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology. J S Am Earth Sci 64:381–398CrossRefGoogle Scholar
  16. French SW, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nat 525:95–99CrossRefGoogle Scholar
  17. Galland O, Hallot E, Cobbold PR et al (2007) Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26. Scholar
  18. Giambiagi LB, Bechis F, García V, Clark A (2005) Temporal and spatial relationship between thick- and thin-skinned deformation in the thrust front of the Malargüe fold and thrust belt, Southern Central Andes. In: Abstracts of the 6 international symposium on Andean geodynamics, Barcelona, 12–14 Sept 2005Google Scholar
  19. Giambiagi L, Mescua J, Bechis F, Tassara A, Hoke G (2012) Thrust belts of the southern Central Andes: along-strike variations in shortening, topography, crustal geometry, and denudation. Geol Soc Am Bull 124:339–1351CrossRefGoogle Scholar
  20. Gianni GM, Sagripanti L, Folguera A et al (2014) Tectónica cuaternaria en el retroarco Andino a la latitud del volcán Tromen (37° S). Rev Asoc Geol Argent 71:513–525Google Scholar
  21. Gianni GM, Garcia HPA, Lupari M, Pesce A, Folguera A (2017) Plume overriding triggers shallow subduction and orogeny in the southern Central Andes. Gondwana Res 49:387–395. Scholar
  22. Gudnason J, Holm PM, Søager N, Llambías EJ (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. J S Am Earth Sci 37:191–201CrossRefGoogle Scholar
  23. Hosseini K (2016) Global multiple-frequency seismic tomography using teleseismic and core-diffracted body waves. Dissertation, LMU München, Fakultät für GeowissenschaftenGoogle Scholar
  24. Holm PM, Søager N, Alfastsen M, Bertotto GW (2016) Subduction zone mantle enrichment by fluids and Zr–Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina. Lithos 262:135–152CrossRefGoogle Scholar
  25. Houser C, Masters G, Shearer P, Laske G (2008) Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys J Int 174(1):195–212CrossRefGoogle Scholar
  26. Kay SM, Mancilla O, Copeland P (2006a) Evolution of the Backarc Chachahuén volcanic complex at 37° S latitude over a transient Miocene shallow subduction zone under the Neuquén Basin. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39° S). Geological Society of America, SP 407, pp 215–246Google Scholar
  27. Kay SM, Burns WM, Copeland P, Mancilla O (2006b) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Late Cretaceous to recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39° S). Geological Society of America, SP 407, pp 19–60Google Scholar
  28. Kay SM, Copeland P (2006) Early to middle Miocene backarc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39° S). Geological Society of America, SP 407, pp 185–214Google Scholar
  29. Kincaid C, Druken KA, Griffiths RW, Stegman DR (2013) Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat Geosc 6:395–399CrossRefGoogle Scholar
  30. Litvak VD, Spagnuolo MG, Folguera A et al (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34° 30′–37° S), Argentina. J S Am Earth Sci 64:365–380CrossRefGoogle Scholar
  31. Litvak VD, Poma S, Jones RE et al (2017) The Late Paleogene to Neogene volcanic arc in the Southern Central Andes (28°–37° S), Argentina. In: Folguera et al (eds) The making of the Chilean and Argentinean Andes. Springer, BerlinGoogle Scholar
  32. Macera P, Gasperini D, Ranalli G, Mahatsente R (2008) Slab detachment and mantle plume upwelling in subduction zones: an example from the Italian South-Eastern Alps. J Geod 45(1):32–48CrossRefGoogle Scholar
  33. Manea VC, Pérez-Gussinyé M, Manea M (2012) Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology 40(1):35–38CrossRefGoogle Scholar
  34. Mériaux CA, Mériaux AS, Schellart WP, Duarte JC, Duarte SS, Chen Z (2016) Mantle plumes in the vicinity of subduction zones. Eart Planet Sci Lett 454:166–177CrossRefGoogle Scholar
  35. Müller RD, Seton M, Zahirovic S et al (2016) Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annl Rev Earth Planet Sci 44:107–138CrossRefGoogle Scholar
  36. Murphy JB, Oppliger GL, Brimhall GH, Hynes A (1998) Plume-modified orogeny: an example from the western United States. Geology 26:731–734CrossRefGoogle Scholar
  37. Murphy JB, van Staal CR, Keppie JD (1999) Middle to late Paleozoic Acadian orogeny in the northern Appalachians: a laramide-style plume-modified orogeny? Geology 27:653–656CrossRefGoogle Scholar
  38. Murphy JB, Keppie JD (2005) The Acadian orogeny in the northern Appalachians. Int Geol Rev 47:663–687CrossRefGoogle Scholar
  39. Murphy JB (2016) The role of the ancestral yellowstone plume in the tectonic evolution of the Western United States. Geosc Canada 43:231–250CrossRefGoogle Scholar
  40. Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25(1):4–29CrossRefGoogle Scholar
  41. Nullo FE, Franchi M, González P et al (1993) Mapa Geológico de la Provincia de Río Negro. Dirección Nacional del Servicio Geológico, Buenos AiresGoogle Scholar
  42. Nullo FE, Panza JL, Blasco G (1999) El Jurásico y Cretácico de la Cuenca Austral. In: Caminos, R. (Ed.), Geología Argentina. Servicio Geológico Minero Argentino, pp 528–535Google Scholar
  43. Nullo FE, Stephens G, Otamendi J, Baldauf P (2002) El volcanismo del Terciario superior del sur de Mendoza. Rev Asoc Geol Argent 57:119–132Google Scholar
  44. Obrebski M, Allen RM, Xue M, Hung SH (2010) Slab-plume interaction beneath the Pacific Northwest. Geophys Res Let 37:L14305. Scholar
  45. Oppliger GL, Murphy JB, Brimhall GH Jr (1997) Is the ancestral yellowstone hotspot responsible for the tertiary “Carlin” mineralization in the Great Basin of Nevada? Geology 25:627–630CrossRefGoogle Scholar
  46. Ostera H, Linares E, Haller M (1999) Paramillos Altos intrusive belt, Southern Mendoza, Argentina. Ages, chemical and isotopic constraints. In: Abstracts of the 2 South American symposium on isotope geology, Villa Carlos Paz, 10–15 Apr 1999Google Scholar
  47. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6:233–248CrossRefGoogle Scholar
  48. Pesicek JD, Engdahl ER, Thurber CH et al (2012) Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30–40 S), Chile. Geophys J Int 191:317–324CrossRefGoogle Scholar
  49. Ramos VA, Barbieri M (1989) El volcanismo cenozoico de Huantraico: edad y relaciones isotópicas iniciales, provincia del Neuquén. Rev Asoc Geol Argent 43:210–223Google Scholar
  50. Ramos VA, Folguera A (2011) Payenia volcanic province in the Southern Andes: an appraisal of an exceptional Quaternary tectonic setting. J Volcanol Geother Res 201:53–64CrossRefGoogle Scholar
  51. Ramos VA, Litvak V, Folguera A, Spagnuolo M (2014) An Andean tectonic cycle: from crustal thickening to extension in a thin crust (34–37° S). Focus Geosci Front 5:351–367CrossRefGoogle Scholar
  52. Sagripanti L, Naipauer M, Bottesi G et al (2011) U/Pb ages on detrital zircons in the Southern Central Andes Neogene foreland (36°–37° S): constraints on Andean exhumation. J S Am Earth Sci 32:554–565CrossRefGoogle Scholar
  53. Sagripanti L, Aguirre-Urreta B, Folguera A, Ramos VA (2015a) The Neocomian of Chachahuén (Mendoza, Argentina): evidence of a broken foreland associated with the Payenia flat-slab. Geol Soc London SP 399:203–219CrossRefGoogle Scholar
  54. Sagripanti L, Rojas Vera E, Gianni GM et al (2015b) Neotectonic reactivation of the western section of the Malargüe fold and thrust belt (Tromen volcanic plateau, Southern Central Andes). Geomorphology 232:164–181CrossRefGoogle Scholar
  55. Skinner SM, Clayton RW (2013) The lack of correlation between flat slabs and bathymetric impactors in South America. Earth Planet Sci Let 371:1–5CrossRefGoogle Scholar
  56. Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem Geol 349–350:36–53CrossRefGoogle Scholar
  57. Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 my: implications for mountain building in the central Andean region. J S Am Earth Sci 11:211–215CrossRefGoogle Scholar
  58. Somoza R, Ghidella M (2012) Late Cretaceous to Recent plate motions in western South America revisited. Earth Planet Sci Let 331–332:152–163CrossRefGoogle Scholar
  59. Spagnuolo MG, Litvak VD, Folguera A, Bottesi G, Ramos VA (2012) Neogene magmatic expansion and mountain building processes in the southern Central Andes, 36–37°S, Argentina. J Geodyn 53:81–94CrossRefGoogle Scholar
  60. Wu J, Suppe J, Lu R, Kanda R (2016) Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J Geophys Res Solid Earth 121:4670–4741CrossRefGoogle Scholar
  61. Yrigoyen M (1993) Los depósitos sinorogénicos terciarios. In: Ramos VA (ed) Geología y Recursos minerales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 123–148Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Guido M. Gianni
    • 1
    • 2
    Email author
  • Agustina Pesce
    • 1
  • Héctor P. A. García
    • 1
  • Marianela Lupari
    • 1
  • Sebastián Correa-Otto
    • 1
  • Silvina Nacif
    • 1
  • Andrés Folguera
    • 2
  1. 1.IGSV, Instituto Geofísico Sismológico Ing. VolponiUniversidad Nacional de San JuanSan JuanArgentina
  2. 2.CONICET, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN)Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations