Tectono-Stratigraphic Evolution of the Atuel Depocenter During the Late Triassic to Early Jurassic Rift Stage, Neuquén Basin, West-Central Argentina

  • Florencia BechisEmail author
  • Laura B. Giambiagi
  • Maisa A. Tunik
  • Julieta Suriano
  • Silvia Lanés
  • José F. Mescua
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The Neuquén Basin presents an almost continuous record from the Late Triassic until the Paleocene, making it an excellent case study of the most relevant tectonic stages of southern South America during the Mesozoic. It was initiated in Late Triassic to Early Jurassic times as a continental rift basin in the context of a widespread extensional stage that affected western Gondwana and culminated with the break-up of the supercontinent. The Atuel depocenter is located in the northern sector of the Neuquén Basin. Its synrift and sag units are represented by Upper Triassic to Lower Jurassic siliciclastic marine and continental sedimentary rocks including the oldest marine deposits of the basin, of Late Triassic age. The depocenter infill has been deformed and exhumed during the Andean orogeny, being presently exposed in the northern sector of the Malargüe fold and thrust belt. In this review, we have integrated a large set of stratigraphic, sedimentologic, geochronologic, and structural data in order to unravel the tectono-sedimentary evolution of the Atuel depocenter and to evaluate the main controlling factors of the synrift stage. We analyzed data from the synrift units, such as facies and thickness distribution, sandstone provenance, detrital zircon geochronology data, kinematic data from outcrop-scale normal faults, angular and progressive unconformities, and subsurface information. Reactivation of preexisting NNW-striking anisotropies under a regional NNE extension resulted in an oblique rift setting, which generated a bimodal distribution of NNW- and WNW-striking major normal faults. Reduced strain and stress tensors obtained from the kinematic and dynamic analysis of structural data show a complex heterogeneity that we interpreted as a result of local stress permutations due to the activity of the larger faults and to strain partitioning inside the Atuel depocenter. Sedimentologic and petrographic data revealed a complex evolution with strong lateral variations of the depositional environments during the synrift phase, which lasted from Rhaetian to Pliensbachian times. We identified several stages that were controlled by processes of initiation, propagation, growth, linkage, and deactivation of new and reactivated faults along the depocenter evolution, in combination with sea-level changes related to global eustatic variations. Sandstone provenance data suggest an important basin reorganization by the Toarcian, probably related to the initiation of the sag stage in this depocenter.


Neuquén Basin Atuel depocenter Oblique rift Kinematic and dynamic analysis Sedimentary provenance 



This research was funded by Agencia Nacional de Promoción Científica y Tecnológica (PICT 07-10942, PICT 38295, PICT-2015-1181), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 5843), and Universidad de Buenos Aires (UBACYT 855). We wish to give special thanks to Alejandro Celli, Gabriela Da Poian, Victor García, Diego Iaffa, Diego Kietzmann, Darío Orts, Sergio Orts, Marilin Peñalva, Carla Terrizzano, and Daniel Yagupsky for their invaluable help in the field and discussions. We thank Drs. Susana Damborenea, Miguel Manceñido, and Alberto Riccardi, for their comments about the biostratigraphic data. The subsurface information was kindly facilitated by Julián Fantín, Gonzalo Zamora Valcarce, Roberto Varade, and Tomás Zapata, from Repsol-YPF. We also thank Ernesto Cristallini for many fruitful discussions about the topic.


  1. Allmendinger RW, Cardozo N, Fisher D (2012) Structural geology algorithms: vectors and tensors in structural geology. Cambridge University Press, CambridgeGoogle Scholar
  2. Alvarez P, Ramos VA (1999) The Mercedario rift system in the principal Cordillera of Argentina and Chile (32° SL). J S Am Earth Sci 12:17–31CrossRefGoogle Scholar
  3. Artabe AE, Morel EM, Spalletti L et al (1998) Paleoambientes sedimentarios y paleoflora asociada en el Triásico tardío de Malargüe, Mendoza. Rev Asoc Geol Argent 53:526–584Google Scholar
  4. Artabe AE, Ganuza DG, Spalletti LA et al (2005) Revisión de la paleoflora del cerro La Brea (Jurásico Temprano), provincia de Mendoza, Argentina. Ameghiniana 42:429–442Google Scholar
  5. Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: A geodynamic model. Geol Soc Am Bull 107:253–273CrossRefGoogle Scholar
  6. Azcuy CL, Caminos R (1987) Diastrofismo. In: Archangelsky S (ed) El Sistema Carbonífero en la República Argentina. Academia Nacional de Ciencias, Córdoba, pp 239–251Google Scholar
  7. Baldauf P (1997) Timing of the uplift of the Cordillera Principal, Mendoza Province, Argentina. Master thesis, George Washington UniversityGoogle Scholar
  8. Balgord EA, Carrapa B (2016) Basin evolution of Upper Cretaceous-Lower Cenozoic strata in the Malargüe fold and thrust belt: northern Neuquén Basin, Argentina. Basin Res 28:183–206CrossRefGoogle Scholar
  9. Barrionuevo M, Mescua JF, Giambiagi L et al (2019) Miocene deformation in the orogenic front of the Malargüe fold-and-thrust belt (35°30′–36° S): controls on the migration of magmatic and hydrocarbon fluids. Tectonophysics 766:480–499CrossRefGoogle Scholar
  10. Bechis F (2009) Deformación transtensiva de la cuenca Neuquina: análisis a partir de ejemplos de campo y modelos análogos. Ph.D. thesis, Universidad de Buenos AiresGoogle Scholar
  11. Bechis F, Giambiagi LB, Lanés S et al (2009) Evidencias de extensión oblicua en los depósitos de sinrift del sector norte de la cuenca Neuquina. Rev Asoc Geol Argent 65:293–310Google Scholar
  12. Bechis F, Giambiagi L, García V et al (2010) Kinematic analysis of a transtensional fault system: the Atuel depocenter of the Neuquén basin, southern Central Andes, Argentina. J Struct Geol 32:886–899CrossRefGoogle Scholar
  13. Bechis F, Cristallini E, Giambiagi L et al (2014) Transtensional tectonics induced by oblique reactivation of previous lithospheric anisotropies during the Late Triassic to Early Jurassic rifting in the Neuquén basin: insights from analog models. J Geodyn 79:1–17CrossRefGoogle Scholar
  14. Buchanan AS, Kietzmann DA, Palma RM (2017) Evolución paleoambiental de la Formación Remoredo (Jurásico inferior) en el depocentro Malargüe, Cuenca Neuquina Surmendocina. Rev Asoc Geol Argent 74:163–178Google Scholar
  15. Carbone O, Franzese J, Limeres M et al (2011) El Ciclo Precuyano (Triásico Tardío-Jurásico Temprano) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 63–75Google Scholar
  16. Charrier R (1979) El Triásico en Chile y regiones adyacentes de Argentina: Una reconstrucción paleogeográfica y paleoclimática. Departamento de Geología, Universidad de Chile, Santiago, Comunicaciones 26:1–47Google Scholar
  17. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114CrossRefGoogle Scholar
  18. Cobbold PR, Rossello EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén basin Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  19. Combina AM, Nullo F (2000) La Formación Loma Fiera (Mioceno superior) y su relación con el volcanismo y el tectonismo neógeno, Mendoza. Rev Asoc Geol Argent 55:201–210Google Scholar
  20. Cristallini EO, Tomezzoli RN, Pando G (2009) Controles precuyanos en la estructura de la cuenca Neuquina. Rev Asoc Geol Argent 65:248–264Google Scholar
  21. Damborenea SE (1987) Early Jurassic bivalvia of Argentina. Part 1: Stratigraphical introduction and Superfamilies Nuculanacea, Arcacea, Mytilacea and Pinnacea. Palaeontogr A 199:23–111Google Scholar
  22. Davidson J (1988) El Jurásico y Cretácico inferior en las nacientes del río Teno (Chile): una revisión. In: Abstracts of the 5° Congreso Geológico Chileno, Santiango de Chile, 8–12 Aug 1988Google Scholar
  23. De Paola N, Holdsworth RE, McCaffrey KJ et al (2005) Partitioned transtension: an alternative to basin inversion models. J Struct Geol 27:607–625CrossRefGoogle Scholar
  24. Dicarlo DJ, Cristallini E (2007) Estructura de la margen norte del Río Grande, Bardas Blancas, provincia de Mendoza. Rev Asoc Geol Argentina 62:187–199Google Scholar
  25. Dickinson WR, Beard LS, Brakenridge GR et al (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235CrossRefGoogle Scholar
  26. Espinoza M, Montecino D, Oliveros V et al (2018) The synrift phase of the early Domeyko Basin (Triassic, northern Chile): sedimentary, volcanic and tectonic interplay in the evolution of an ancient subduction-related rift basin. Basin Res. Scholar
  27. Fennell LM, Folguera A, Naipauer M et al (2017) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S). Basin Res 29:51–72CrossRefGoogle Scholar
  28. Franzese JR, Spalletti LA (2001) Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J S Am Earth Sci 14:257–270CrossRefGoogle Scholar
  29. Fuentes F, Horton BK, Starck D et al (2016) Structure and tectonic evolution of hybrid thick-and thin-skinned systems in the Malargüe fold–thrust belt, Neuquén basin, Argentina. Geol Mag 153:1066–1084CrossRefGoogle Scholar
  30. García Morabito E, Ramos VA (2012) Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38° 30′–40°30′ S). J S Am Earth Sci 38:13–30CrossRefGoogle Scholar
  31. Gawthorpe RL, Leeder MR (2000) Tectono-sedimentary evolution of active extensional basins. Basin Res 12:195–218CrossRefGoogle Scholar
  32. Gerth E (1925) Estratigrafía y distribución de los sedimentos mesozoicos en los Andes Argentinos. Academia Nacional de Ciencias, vol 9, Cordoba, pp 11–55Google Scholar
  33. Giambiagi LB, Martínez A (2008) Permo-Triassic oblique extension in the Potrerillos-Uspallata area, western Argentina. J S Am Earth Sci 26:252–260CrossRefGoogle Scholar
  34. Giambiagi LB, Alvarez P, Godoy E et al (2003a) The control of pre-existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics 369:1–19CrossRefGoogle Scholar
  35. Giambiagi LB, Ramos VA, Godoy E et al (2003b) Cenozoic deformation and tectonic style of the Andes, between 33° and 34°. South Latitude. Tectonics 22:1041Google Scholar
  36. Giambiagi LB, Suriano J, Mescua J (2005a) Extensión multiepisódica durante el Jurásico Temprano en el depocentro Atuel de la cuenca Neuquina. Rev Asoc Geol Argent 60:524–534Google Scholar
  37. Giambiagi LB, Álvarez PP, Bechis F et al (2005b) Influencia de las estructuras de rift triásicas – jurásicas sobre el estilo de deformación en las fajas plegadas y corridas Aconcagua y Malargüe. Rev Asoc Geol Argent 60:661–671Google Scholar
  38. Giambiagi LB, Bechis F, Lanés S et al (2008a) Formación y evolución triásico-jurásica del depocentro Atuel, cuenca Neuquina, provincia de Mendoza, Argentina. Rev Asoc Geol Argent 63:520–533Google Scholar
  39. Giambiagi LB, Bechis F, García VH et al (2008b) Temporal and spatial relationships of thick- and thin-skinned deformation in the Malargüe fold and thrust belt, Southern Central Andes. Tectonophysics 459:123–139CrossRefGoogle Scholar
  40. Giambiagi LB, Tunik MA, Barredo S et al (2009a) Cinemática de apertura del sector norte de la cuenca Neuquina. Rev Asoc Geol Argent 65:278–292Google Scholar
  41. Giambiagi LB, Ghiglione M, Cristallini E et al (2009b) Kinematic models of basement/cover interactions: insights from the Malargüe fold and thrust belt, Mendoza, Argentina. J Struct Geol 31:1443–1457CrossRefGoogle Scholar
  42. Giambiagi LB, Mescua JF, Bechis F et al (2011) Pre-Andean deformation of the Precordillera southern sector, southern Central Andes. Geosphere 7:219–239CrossRefGoogle Scholar
  43. Giambiagi LB, Mescua JF, Bechis F et al (2012) Thrust belts of the southern Central Andes: along-strike variations in shortening, topography, crustal geometry, and denudation. Geol Soc Am Bull 124:1339–1351CrossRefGoogle Scholar
  44. Giambiagi LB, Tassara A, Mescua JF et al (2014) Evolution of shallow and deep structures along the Maipo-Tunuyán transect (33° 40′ S): from the Pacific coast to the Andean foreland. In: Sepúlveda SA, Giambiagi LB, Moreiras S et al (eds) Geodynamic processes in the Andes of Central Chile and Argentina, The Geological Society, London, SP 399, p 63CrossRefGoogle Scholar
  45. Gómez R, Lothari L, Tunik MA et al (2019) Onset of foreland basin deposition in the Neuquén Basin (34°–35°S): new data from sedimentary petrology and U-Pb dating of detrital zircons from the Upper Cretaceous non-marine deposits. J S Am Earth Sci 95:102257CrossRefGoogle Scholar
  46. Gulisano CA (1981) El Ciclo Cuyano en el norte de Neuquén y sur de Mendoza. In: Abstracts of the 8 Congreso Geológico Argentino, San Luis, 20–26 Sept 1981Google Scholar
  47. Gulisano CA, Gutiérrez Pleimling AR (1994) The Jurassic of the Neuquén Basin: b) Mendoza Province. Guía de Campo. Asociación Geológica Argentina, Buenos Aires, vol E3, pp 1–103Google Scholar
  48. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167CrossRefGoogle Scholar
  49. Herbst R (1968) Las floras liásicas argentinas con consideraciones estratigráficas. In: Abstracts of the 3º Jornadas Geológicas Argentinas, Buenos Aires, pp 145–162Google Scholar
  50. Horton BK, Fuentes F, Boll A et al (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén basin, Argentina. J S Am Earth Sci 71:17–40CrossRefGoogle Scholar
  51. Howell JA, Schwarz E, Spalletti LA et al (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, 1–14CrossRefGoogle Scholar
  52. Hu JC, Angelier J (2004) Stress permutations: three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. J Geoph Res 109:B09403Google Scholar
  53. Jaeger JC, Cook NG, Zimmerman R (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Oxford, p 488Google Scholar
  54. Japas MS, Cortés JM, Pasini M (2008) Tectónica extensional triásica en el sector norte de la cuenca Cuyana: primeros datos cinemáticos. Rev Asoc Geol Argentina 63:213–222Google Scholar
  55. Kaven JO, Maerten F, Pollard DD (2011) Mechanical analysis of fault slip data: Implications for paleostress analysis. J Struct Geol 33:78–91CrossRefGoogle Scholar
  56. Keidel J (1916) La geología de las sierras de la provincia de Buenos Aires y sus relaciones con las montañas del Cabo y los Andes. Ministerio de Agricultura de la Nación, Anales Dirección de Geología, Mineralogía y Minería 9:5–77Google Scholar
  57. Kleiman LE, Japas MS (2009) The Choiyoi volcanic province at 34° S–36° S (San Rafael, Mendoza, Argentina): implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473:283–299CrossRefGoogle Scholar
  58. Kokogian DA, Fernández Seveso F, Mosquera A (1993) Las secuencias sedimentarias Triásicas. In: Ramos VA (ed) Geología y recursos naturales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 65–78Google Scholar
  59. Kozlowski E, Manceda R, Ramos VA (1993) Estructura. In: Ramos VA (ed) Geología y recursos naturales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 235–256Google Scholar
  60. Lanés S (2002) Paleoambientes y Paleogeografía de la primera transgresión en Cuenca Neuquina, Sur de Mendoza. Ph.D. thesis, Universidad de Buenos AiresGoogle Scholar
  61. Lanés S (2005) Late Triassic to Early Jurassic sedimentation in northern Neuquén Basin, Argentina: tectonosedimentary evolution of the first transgression. Geol Acta 3:81–106Google Scholar
  62. Lanés S, Palma RM (1998) Environmental implications of oncoids and associated sediments from the Remoredo Formation (Lower Jurassic) Mendoza, Argentina. Palaeo 140:357–366CrossRefGoogle Scholar
  63. Lanés S, Salani FM (1998) Petrografía, origen y paleoambiente sedimentario de las piroclastitas de la Formación Remoredo (Jurásico Temprano), Argentina (35° 30′ S–70° 15′ W). Rev Geol Chile 25:141–152CrossRefGoogle Scholar
  64. Lanés S, Giambiagi LB, Bechis F et al (2008) Late Triassic—early Jurassic successions of the Atuel depocenter: sequence stratigraphy and tectonic controls. Rev Asoc Geol Argentina 63:534–548Google Scholar
  65. Lanés S, Gnaedinger SC, Zavattieri AM et al (2013) Sedimentary paleoenvironment and fossil plants of the El Freno Formation (early Jurassic) in Las Leñas valley, Neuquén basin. Rev Asoc Geol Argentina 70:465–476Google Scholar
  66. Legarreta L, Gulisano CA (1989) Análisis estratigráfico secuencial de la cuenca Neuquina (Triásico superior – Terciario inferior), Argentina. In: Chebli G, Spalletti L (eds) Cuenca Neuquina. Universidad Nacional de Tucumán, San Miguel de Tucuman, Ser. Corr Geol 6, pp 221–243Google Scholar
  67. Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeo 120:303–330CrossRefGoogle Scholar
  68. Legarreta L, Uliana MA (1999) El Jurásico y Cretácico de la Cordillera Principal y Cuenca Neuquina. In: Caminos R (ed) Geología Argentina. Instituto de Geología y Recursos Minerales, Buenos Aires 29, pp 399–432Google Scholar
  69. Legarreta L, Gulisano CA, Uliana MA (1993) Las secuencias sedimentarias jurásico-cretácicas. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 87–114Google Scholar
  70. Limarino CO, Spalletti L (2006) Paleogeography of the Upper Paleozoic basins of southern South America: an overview. J S Am Earth Sci 22:134–155CrossRefGoogle Scholar
  71. Llambías EJ (1999) Las rocas ígneas gondwánicas. 1. El magmatismo gondwánico durante el Paleozoico Superior-Triásico. In: Caminos R (ed), Geología Argentina. Instituto de Geología y Recursos Minerales, vol 29. Asociación Geológica Argentina, Buenos Aires, pp 349–363Google Scholar
  72. Llambías EJ, Kleiman LE, Salvarredi JA (1993) El magmatismo Gondwánico. In: Ramos VA (ed.) Geología y Recursos Naturales de Mendoza. Instituto de Geología y Recursos Minerales 29, Asociación Geológica Argentina, Buenos Aires, pp 53–64Google Scholar
  73. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico Temprano en la Cordillera del Viento (37° 05′ S–37° 15′ S): Nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Rev Asoc Geol Argent 62:217–235Google Scholar
  74. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold-thrust belt, Mendoza, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum basins of South America. AAPG Memoir 62:369–382Google Scholar
  75. Marrett RA, Allmendinger RW (1990) Kinematic analysis of fault-slip data. J Struct Geol 12:973–986CrossRefGoogle Scholar
  76. Martinez Días JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophys 356:291–305CrossRefGoogle Scholar
  77. Mazzini A, Svensen H, Leanza HA et al (2010) Early Jurassic shale chemostratigraphy and U-Pb ages from the Neuquén Basin (Argentina): implications for the Toarcian oceanic anoxic event. Earth Planet Sci Lett 297:633–645CrossRefGoogle Scholar
  78. Mescua JF, Giambiagi LB, Bechis F (2008) Evidencias de Tectónica Extensional en el Jurásico Tardío (Kimeridgiano) del suroeste de la Provincia de Mendoza. Rev Asoc Geol Argentina 63:512–519Google Scholar
  79. Mescua JF, Giambiagi LB, Ramos VA (2013) Late Cretaceous Uplift in the Malargüe fold-and-thrust belt (35° S), southern Central Andes of Argentina and Chile. Andean Geol 40:102–116Google Scholar
  80. Mescua JF, Giambiagi LB, Tassara A et al (2014) Influence of pre-Andean history over Cenozoic foreland deformation: structural styles in the Malargüe fold-and-thrust belt at 35 S, Andes of Argentina. Geosphere 10:585–609CrossRefGoogle Scholar
  81. Mescua JF, Giambiagi L, Barrionuevo M et al (2016) Basement composition and basin geometry controls on upper- crustal deformation in the Southern Central Andes (30-36°S). Geol Magaz 153:945–961CrossRefGoogle Scholar
  82. Mosquera A, Ramos VA (2006) Intraplate deformation in the Neuquén Embayment. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S latitude). Geol Soc Am, SP 407: 97–123Google Scholar
  83. Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and energy resources. Circum-Pacific Council for Energy and Hydrothermal Resources, Earth Science Series 11, pp 59–90Google Scholar
  84. Naipauer M, Tapia F, Mescua J, Farías M et al (2015) Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): an insight on the source regions in the northern part of the Neuquén Basin. J S Am Earth Sci 64:434–451CrossRefGoogle Scholar
  85. Nieto-Samaniego AF (1999) Stress, strain and fault patterns. J Struct Geol 21:1065–1070CrossRefGoogle Scholar
  86. Nullo F, Stephens G, Otamendi J et al (2002) El volcanismo del Terciario superior del sur de Mendoza. Rev Asoc Geol Argent 57:119–132Google Scholar
  87. Nullo F, Stephens G, Combina A et al (2005) Hoja geológica 3569-III/3572-IV Malargüe, provincia de Mendoza. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, Buenos AiresGoogle Scholar
  88. Oliveros V, González J, Espinoza M et al (2018) The early stages of the Magmatic Arc in the Southern Central Andes. In: Folguera A, Contreras Reyes E et al (eds) The evolution of the Chilean-Argentinean Andes. Springer, Cham, pp 165–190CrossRefGoogle Scholar
  89. Orts DL, Folguera A, Giménez M et al (2012) Variable structural controls through time in the Southern Central Andes (~36ºS). Andean Geol 39:220–241Google Scholar
  90. Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Petrol Geol 37:162–183CrossRefGoogle Scholar
  91. Pángaro F, Pereira M, Raggio F et al (2006) Tectonic inversion of the Huincul High, Neuquén Basin, Argentina: An Endangered Species. stratigraphic evidences of it’s disappearance. In: Abstracts of the 9 Simposio Bolivariano de Exploración Petrolera en las Cuencas Subandinas, Aug 2006Google Scholar
  92. Pankhurst RJ, Rapela CW, Fanning CM et al (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257CrossRefGoogle Scholar
  93. Ramos VA (1988) Late Proterozoic-Early Paleozoic of South America—a collisional history. Episodes 11:168–174CrossRefGoogle Scholar
  94. Ramos VA (2008) Patagonia: a Paleozoic continent adrift? J S Am Earth Sci 26:235–251CrossRefGoogle Scholar
  95. Ramos VA (2010) The tectonic regime along the Andes: present-day and Mesozoic regimes. Geol J 45:2–25CrossRefGoogle Scholar
  96. Ramos VA, Kay SM (2006) Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39° S latitude). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S latitude). Geol Soc Am SP 407:1–18Google Scholar
  97. Ramos VA, Jordan TE, Allmendinger W et al (1986) Paleozoic Terranes of the Central Argentine-Chilean Andes. Tectonics 5:855–880CrossRefGoogle Scholar
  98. Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the Late Palaeozoic: some palaeomagnetic constraints. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane Processes at the Margins of Gondwana. The Geological Society, London, SP 246, pp 305–328CrossRefGoogle Scholar
  99. Reijenstein C (1967) Estratigrafía y tectónica de la zona al Norte del río Atuel, entre los arroyos Blanco y Malo, provincia de Mendoza. Universidad de Buenos Aires, Trabajo final de LicenciaturaGoogle Scholar
  100. Riccardi AC, Damborenea SE (1993) Léxico estratigráfico de la Argentina: Jurásico. Asociación Geológica Argentina, Serie B 21, Buenos Aires, pp 470Google Scholar
  101. Riccardi A, Iglesia Llanos MP (1999) Primer hallazgo de amonites en el Triásico de la Argentina. Rev Asoc Geol Argentina 54:298–300Google Scholar
  102. Riccardi AC, Damborenea S, Manceñido MO et al (1988) Hettangiano y Sinemuriano marinos en Argentina. In: Abstracts of the 5 Congreso Geológico Chileno, Santiago de Chile, 8–12 Aug 1988Google Scholar
  103. Riccardi AC, Damborenea S, Manceñido MO et al (1991) Hettangian and Sinemurian (Lower Jurassic) biostratigraphy of Argentina. J S Am Earth Sci 4:159–170CrossRefGoogle Scholar
  104. Riccardi AC, Damborenea SE, Manceñido MO et al (1997) Primer registro de Triásico marino fosilífero de la Argentina. Rev Asoc Geol Argent 52:228–234Google Scholar
  105. Sato AM, Llambías E, Basei M et al (2015) Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. J S Am Earth Sci 63:48–69CrossRefGoogle Scholar
  106. Schiuma M, Llambías EJ (2008) New ages and chemical analysis on Lower Jurassic volcanism close to the Huincul High, Neuquén. Rev Asoc Geol Argent 63:644–652Google Scholar
  107. Silvestro J, Kraemer P (2005) Evolución tecto-sedimentaria de la Cordillera Principal en el sector surmendocino a los 35° 30′ S. Faja Plegada de Malargüe. República Argentina. In: Abstracts of the 6°Congreso de Exploración y desarrollo de hidrocarburos, Mar del Plata, 15–19 November 2005Google Scholar
  108. Silvestro J, Zubiri M (2008) Convergencia oblicua: modelo estructural alternativo para la Dorsal Neuquina (39° S) - Neuquén. Rev Asoc Geol Argent 63:49–64Google Scholar
  109. Spagnuolo M, Litvak V, Folguera A et al (2012) Neogene magmatic expansion and mountain building processes in the southern Central Andes, 36-37° S, Argentina. J Geodyn 53:81–94CrossRefGoogle Scholar
  110. Spalletti LA (1997) Sistemas deposicionales fluvio-lacustres en el rift triásico de Malargüe (sur de Mendoza, República Argentina). A Acad Nac Cs Ex Fís Nat 49:109–124Google Scholar
  111. Spalletti LA, Morel EM, Franzese JR et al (2007) Contribución al conocimiento sedimentológico y paleobotánico de la Formación El Freno (Jurásico Temprano) en el valle superior del río Atuel, Mendoza, Argentina. Ameghiniana 44:367–386Google Scholar
  112. Sruoga P, Etcheverría M, Folguera A et al (2005) Hoja Geológica 3569-I Volcán Maipú, Servicio Geológico y Minero Argentino, Boletín 290, 116 p, Buenos AiresGoogle Scholar
  113. Stipanicic PN (1969) El avance en los conocimientos del Jurásico argentino a partir del esquema de Groeber. Rev Asoc Geol Argent 24:367–388Google Scholar
  114. Stipanicic PN (1979) El Triásico de Valle del río de Los Patos (provincia de San Juan). In: Turner JCM (ed) Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba, pp 695–744Google Scholar
  115. Teyssier C, Tikoff B, Markley M (1995) Oblique plate motion and continental tectonics. Geology 23:447–450CrossRefGoogle Scholar
  116. Tickyj H, Fernández MA, Chemale Jr F et al (2009). Granodiorita Pampa de los Avestruces, Cordillera Frontal, Mendoza: un intrusivo sintectónico de edad devónica inferior. In: Abstracts of the 14 Reunión de Tectónica, 19–23 Oct 2015Google Scholar
  117. Tikoff B, Teyssier C (1994) Strain modelling of displacement-field partitioning in transpressional orogens. J Struct Geol 16:1575–1588CrossRefGoogle Scholar
  118. Tomezzoli RN (2012) Chilenia y Patagonia: un mismo continente a la deriva? Rev Asoc Geol Argent 69:222–239Google Scholar
  119. Tunik MA, Lanés S, Bechis F et al (2008) Análisis petrográfico preliminar de las areniscas jurásicas tempranas en el depocentro Atuel de la cuenca Neuquina. Rev Asoc Geol Argent 63:714–727Google Scholar
  120. Tunik MA, Folguera A, Naipauer M et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489:258–273CrossRefGoogle Scholar
  121. Tunik MA, Giambiagi LB; Barredo S et al (2011) Caracterización petrográfica del relleno del rift de la subcuenca Atuel, provincia de Mendoza. In: Abstracts of the 18 Congreso Geológico Argentino, Neuquén, 2–6 May 2011Google Scholar
  122. Twiss RJ, Unruh JR (1998) Analysis of fault slip inversions: Do they constrain stress or strain rate? J Geoph Res 103:12205–12222CrossRefGoogle Scholar
  123. Uliana M, Biddle K, Cerdán J (1989) Mesozoic extension and the formation of Argentina sedimentary basins. In: Tankard AJ, Balkwill HR (eds) Extensional tectonics and stratigraphy of the North Atlantic Margin). AAPG Memoir 46: 599–613Google Scholar
  124. Uliana M, Arteaga M, Legarreta L et al (1995) Inversion structures and hydrocarbon occurrence in Argentina. In: Buchanan J, Buchanan P (eds) Basin inversion. The Geological Society, London, SP88: 211–233CrossRefGoogle Scholar
  125. Varela R, Basei MAS, González PD et al (2011) Accretion of Grenvillian terranes to the southwestern border of the Río de la Plata craton, western Argentina. Int J of Earth Sci 100:243–272CrossRefGoogle Scholar
  126. Vergani GD, Tankard J, Belotti J et al (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds), Petroleum Basins of South America. AAPG Memoir 62:383–402Google Scholar
  127. Volkheimer W (1978) Descripción Geológica de la Hoja 27b, Cerro Sosneado, provincia de Mendoza. Servicio Geológico Nacional, vol 151, Buenos Aires, p 83Google Scholar
  128. von Hillebrandt A (1989) The Lower Jurassic of the Río Atuel region, Mendoza Province, Argentina. In: Abstracts of the 4º Congreso Argentino de Paleontología y Bioestratigrafía, Mendoza, vol 4, pp 39–43Google Scholar
  129. Westermann GEG, Riccardi AC (1982) Ammonoid fauna from the early Middle Jurassic of Mendoza province, Argentina. J Paleontol 56:11–41Google Scholar
  130. Yagupsky DL, Cristallini EO, Fantín J et al (2008) Oblique half-graben inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina: new insights from analogue models. J Struct Geol 30:839–853CrossRefGoogle Scholar
  131. Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452CrossRefGoogle Scholar
  132. Yamaji A (2003) Are the solution of stress inversion correct? Visualization of their reliability and the separation of stresses from heterogeneous fault-slip data. J Struct Geol 25:241–252CrossRefGoogle Scholar
  133. Yrigoyen MR (1993) Los depósitos sinorogénicos terciarios. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asociación Geológica Argetina, Buenos Aires, pp 123–148Google Scholar
  134. Zamora Valcarce G, Zapata TR, del Pino D et al (2006) Structural evolution and magmatic characteristics of the Agrio fold-and-thrust belt. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35º-39ºS lat). Geol Soc Am, SP 407, p 125–145Google Scholar
  135. Zapata TR, Folguera A (2005) Tectonic evolution of the Andean Fold and Thrust Belt of the southern Neuquén Basin, Argentina. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 37–56CrossRefGoogle Scholar
  136. Zapata TR, Brissón I, Dzelalija F (1999) The structures of the Andean fold and thrust belt in relation to basement control in the Neuquén Basin. Bol Inf Petrol 60:112–121Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Florencia Bechis
    • 1
    Email author
  • Laura B. Giambiagi
    • 2
  • Maisa A. Tunik
    • 3
  • Julieta Suriano
    • 2
  • Silvia Lanés
    • 4
  • José F. Mescua
    • 2
    • 5
  1. 1.Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio (IIDyPCa). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Universidad Nacional de Río Negro, Sede Andina. Mitre 630San Carlos de BarilocheArgentina
  2. 2.Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico Mendoza. Av. Ruiz Leal s/n, Parque General San MartínMendozaArgentina
  3. 3.Universidad Nacional de Río Negro. CONICET. Instituto de Investigaciones en Paleobiología y Geología. Av. Roca 1242.General RocaArgentina
  4. 4.Cape TownSouth Africa
  5. 5.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations