The Miocene Magmatism in the Malargüe and Chos Malal Fold and Thrust Belts

  • Vanesa D. LitvakEmail author
  • Sofía B. Iannelli
  • Lucía Fernández Paz
  • Andrés Folguera
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Late Oligocene to Pliocene magmatism at the latitudes of Malargüe and Chos Malal fold and thrust belts, in the Neuquén Basin, is distributed from the main Andean axis to the retroarc zone. While arc magmatism maintained relatively similar compositional and geochemical features during late Oligocene to Pliocene times, major variations are seen in volcanic sequences developed in the retroarc zone, due to the development of a shallow subduction regime by mid-late Miocene times. Thus, late Oligocene-early Miocene period is characterized by an extensional regime that conditioned mainly tholeiitic magmas in the main Andean axis and alkaline intraplate magmas in the retroarc zone. Early-late Miocene marks a change to compressional tectonics in the Andean margin. Main arc magmatism showed a change to clearer arc, calc-alkaline signature, while retroarc magmatism showed the progressing input of slab-derived products as the shallow subduction regime triggered the eastward migration of the asthenospheric wedge. Thus, arc-derived lavas expanded into the mid to far retroarc zone (~69° 30″ to 68° 30″) with arc-like andesitic to dacitic compositions. With the progressive influence of the shallow subduction regime, arc-derived products reached almost 500 km away from the Chilean trench at ∽36° S by latest Miocene-Pliocene. By the middle Pliocene, re-steepening of the slabconditioned extensional tectonics that favored a widespread alkaline volcanism in the present-day Payenia retroarc and rhyolitic calderas in the main arc zone. After ∽3.5 Ma, retroarc magmatism at the latitudes of the Malargüe and Chos Malal fold and thrust belts lack of clear arc-related geochemical features.


Miocene magmatism San Rafael Block Volcanic arc Payenia Shallow subduction 


  1. Alvarez PP, Ramos VA (1999) The Mercedario rift system in the Principal Cordillera of Argentina and Chile (32° SL). J S Am Earth Sci 12:17–31CrossRefGoogle Scholar
  2. Baldauf P (1993) Timing of deformation in the central Andean Foreland, Western Mendoza, Argentina, using 40Ar/39Ar dating techniques. Master thesis, The George Washington UniversityGoogle Scholar
  3. Baldauf P (1997) Timing of the uplift of the Cordillera Principal, Mendoza Province, Argentina. M.S. Thesis, George Washington University, pp. 356Google Scholar
  4. Burns WM, Jordan T, Copeland P et al (2006) Extensional tectonics in the Oligo-Miocene Southern Andes as recorded in the Cura-Mallín basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén basin (35–39° S). Geol Soc Am, SP 407, pp 163–184Google Scholar
  5. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res Solid Earth 91:471–496CrossRefGoogle Scholar
  6. Charrier R, Wyss AR, Flynn JJ et al (1996) New evidence for late Mesozoic-early Cenozoic evolution of the Chilean Andes in the upper Tinguiririca valley (35 S), central Chile. J S Am Earth Sci 9:393–422CrossRefGoogle Scholar
  7. Charrier R, Baeza O, Elgueta S et al (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36 S). J S Am Earth Sci 15:117–139CrossRefGoogle Scholar
  8. Charrier R, Farías M, Maksaev V (2009) Evolución tectónica, paleogeográfica y metalogénica durante el cenozoico en los Andes de Chile Norte y Central e implicaciones para las regiones adyacentes de Bolivia y Argentina. Rev Asoc Geol Argent 65(1):5–35Google Scholar
  9. Combina A, Nullo F (2000) La Formación Loma Fiera (Mioceno medio) y su relación con el volcanismo y el tectonismo contemporáneo, Cuchilla de la Tristeza, Mendoza. Revista de la Asociación Geológica Argentina LV (3):201–210Google Scholar
  10. Dyhr CT, Holm PM, Llambías EJ (2013a) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: New insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volcanol Geoth Res 266:50–68CrossRefGoogle Scholar
  11. Dyhr CT, Holm PM, Llambías EJ et al (2013b) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza Region, Argentina. Lithos 179:67–83CrossRefGoogle Scholar
  12. Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the Southern Andes: A revision to the long-term pattern of Andean uplift and magmatism. J S Am Earth Sci 32:531–546CrossRefGoogle Scholar
  13. Folguera A, Orts D, Spagnuolo M et al (2011) A review of Late Cretaceous to Quaternary paleogeography of the Southern Andes. Biol J Linn Soc 103:250–268CrossRefGoogle Scholar
  14. Franzese JR, Spalletti LA (2001) Late Triassic-Early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J S Am Earth Sci 14:257–270CrossRefGoogle Scholar
  15. Giambiagi LB, Bechis F, García V, Clark A (2005) Temporal and spatial relationship between thick- and thin-skinned deformation in the thrust front of the Malargüe fold and thrust belt, Southern Central Antes. In: VIº International Symposium on Andean Geodynamics, Extended Abstracts, pp. 315–318Google Scholar
  16. Giambiagi L, Bechis F, García V, Clark A (2008) Temporal and spatial relationship between thick- and thin-skinned deformation in the Malargüe fold and thrust belt, Southern Central Andes. Tectonophysics 459:123–139CrossRefGoogle Scholar
  17. Gianni GM, Echaurren A, Fennell L et al (2018) Cretaceous Orogeny and Marine Transgression in the Southern Central and Northern Patagonian Andes: Aftermath of a Large-Scale Flat-Subduction Event? In: Folguera A, Contreras Reyes E et al (eds) The making of the Chilean-Argentinean Andes. Springer, Berlin, pp. 291–328CrossRefGoogle Scholar
  18. Godoy E, Yáñez G, Vera E (1999) Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306(2):217–236CrossRefGoogle Scholar
  19. Gudnason J, Holm PM, Søager N et al (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. J S Am Earth Sci 37:191–201CrossRefGoogle Scholar
  20. Hernando IR, Aragón E, Frei R et al (2014) Constrains on the origin and evolution of the magmas in the PayúnMatrú Volcanic Field, Quaternary Andean Back-arc of Western Argentina. J Petrol 55(1):209–239CrossRefGoogle Scholar
  21. Jordan TE, Burns WM, Veiga R et al (2001) Mid-Cenozoic intra-arc basins in the southern Andes. Tectonics 20. Scholar
  22. Kay SM, Copeland P (2006) Early to middle Miocene back-arc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39° S). Geological Society of America, SP 407, pp 185–214Google Scholar
  23. Kay SM, Kurtz AC (1995) Magmatic and tectonic characterization of the El Teniente Region. CODELCO-Chile, Unpublished report, pp 180Google Scholar
  24. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion and magmatism in the South-Central Andes. Geol Soc Am Bull 117:67–88CrossRefGoogle Scholar
  25. Kay SM, Mancilla O, Copeland P (2006a) Evolution of the Back-arc Chachahuén volcanic complex at 37° S latitude over a transient Miocene shallow subduction zone under the Neuquén Basin. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatismand tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39° S). Geological Society of America, SP 407, pp 215–246Google Scholar
  26. Kay SM, Burns WM, Copeland P, Mancilla O (2006b) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Late Cretaceous to Recent magmatism and tectonism of the Southern Andean margin at the latitude of the Neuquén basin (36–39° S). Geological Society of America, SP 407, pp 19–60Google Scholar
  27. Kurtz A, Kay SM, Charrier R, Farrar E (1997) Geochronology of Miocene plutons and Andean uplift history in the El Teniente region, Central Chile (34–35 S). Rev Geol Chile 24:75–90Google Scholar
  28. Le Maitre RW, Bateman P, Dudek A et al (1989) A Classification of Igneous Rocks and Glossary of Terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, OxfordGoogle Scholar
  29. Litvak VD, Spagnuolo MG, Folguera A et al (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34° 30′–37° S), Argentina. J S Am Earth Sci 64:365–380CrossRefGoogle Scholar
  30. Litvak VD, Poma S, Jones RE et al (2018) The Late Paleogene to Neogene volcanic arc in the Southern Central Andes (28°–37° S). In: Folguera A, Contreras Reyes E, Heredia N et al (eds) The making of the Chilean-Argentinean Andes. Springer, Berlin, pp 503–541CrossRefGoogle Scholar
  31. Llambías EJ, Bertotto GW, Risso C, Hernando I (2010) El volcanismo cuaternario en el retro-arco de Payenia: una revisión. Rev Asoc Geol Argent 67(2):278–300Google Scholar
  32. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico Temprano en la Cordillera del Viento (37º50’S-37º15’S): nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Rev Asoc Geol Argent 62:217–235Google Scholar
  33. Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404:237–264CrossRefGoogle Scholar
  34. Nullo FE, Stephens G, Otamendi J et al (2002) El volcanismo del Terciario superior del sur de Mendoza. Rev Asoc Geol Argent 57(2):119–132Google Scholar
  35. Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6:233–248CrossRefGoogle Scholar
  36. Pesce AH (1987) Evaluación geotermica del área Cerro Domuyo, Provincia del Neuquén, República Argentina. Rev Brasil Geofís 5:283–299Google Scholar
  37. Piquer J, Hollings P, Rivera O et al (2017) Along-strike segmentation of the Abanico basin, central Chile: new chronological, geochemical and structural constraints. Lithos 268–271:174–197CrossRefGoogle Scholar
  38. Ramos VA (1998) Estructura del sector occidental de la faja plegada y corrida del Agrio, cuenca Neuquina, Argentina. In: X° Congreso Latinoamericano de Geología, Actas 2, pp. 105–110Google Scholar
  39. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In: Veiga G, Spalletti L, Howell J, Schwarz E (eds) The Neuquén Basin: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 15–35CrossRefGoogle Scholar
  40. Ramos VA, Kay SM (2006) Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39° S latitude). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S latitude). Geological Society of America, SP 407, pp 1–17Google Scholar
  41. Ramos VA, Folguera A, Litvak VD, Spagnuolo M (2014) Andean tectonic cycle: From crustal thickening to extension in a thin crust (34–37 SL). Geosci Front 5:351–367CrossRefGoogle Scholar
  42. Rovere E (1998) Volcanismo Jurásico, Paleógeno y Neógeno en el Noroeste del Neuquén, Argentina. In: Abstracts of the 10 Congreso Latinoamericano de Geología y 6 Congreso Nacional de Geología Económica, Buenos Aires, 8–13 Nov 1998Google Scholar
  43. Silvestro J, Atencio M (2009) La cuenca Cenozoica del Río Grande y Palauco: Edad, evolución y control estructural, faja plegada de Malargüe (36º S). Rev Asoc Geol Arg 65(1):154–169Google Scholar
  44. Somoza R (1998) Updated Nazca (Farallon)—South America relative motions during the last 40My: implications for mountain building in the central Andean region. J S Am Earth Sci 11:211–215CrossRefGoogle Scholar
  45. Somoza R, Ghidella ME (2012) Late Cretaceous to recent plate motions in western South America revisited. Earth Planet Sci Let 331–332:152–163CrossRefGoogle Scholar
  46. Spagnuolo M, Litvak VD, Folguera A et al (2012) Neogene magmatic expansion and mountain building at the southern Central Andes, 36°–37° S, Argentina. J Geodyn 53:81–94CrossRefGoogle Scholar
  47. Suárez M, Emparan C (1995) The stratigraphy, geochronology and paleophysiography of a Miocene freshwater interarc basin, Southern Chile. J S Am Earth Sci 8:17–31CrossRefGoogle Scholar
  48. Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a back-arc environment. Chem Geol 349–350:36–53CrossRefGoogle Scholar
  49. Utgé S, Folguera A, Litvak V et al (2009) Geología del sector norte de la cuenca de Cura Mallín en las lagunas de Epulaufquen, Neuquén. Rev Asoc Geol Argent 64:231–248Google Scholar
  50. Yrigoyen M (1993) Los depósitos sinorogénicos terciarios. In: Ramos VA (ed) Geología y Recursos minerales de Mendoza, Relatorio I(11):123–148Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vanesa D. Litvak
    • 1
    • 2
    Email author
  • Sofía B. Iannelli
    • 1
    • 2
  • Lucía Fernández Paz
    • 1
    • 2
  • Andrés Folguera
    • 1
    • 2
  1. 1.Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Departamento de Ciencias GeológicasBuenos AiresArgentina
  2. 2.CONICET-Universidad de Buenos AiresInstituto de Estudios Andinos “Don Pablo Groeber” (IDEAN)Buenos AiresArgentina

Personalised recommendations